Detailed Project Profiles on Hi-Tech Plastic Products (2nd Revised Edition)# ( ) ( Best Seller ) ( ) ( ) ( )
Author NPCS Board of Plastic Technologists ISBN 9789381039632
Code ENI23 Format Hardcover
Price: Rs 1895   1895 US$ 51   51
Pages: 203 Published 2015
Publisher NIIR PROJECT CONSULTANCY SERVICES
Usually Ships within 5 days

Plastic is a polymeric material that has the capability of being molded or shaped, usually by the application of heat and pressure. This property of plasticity, often found in combination with other special properties such as low density, low electrical conductivity, transparency, and toughness, allows plastics to be made into a great variety of products. Many of the chemical names of the polymers employed as plastics have become familiar to consumers, although some are better known by their abbreviations or trade names. Thus, polyethylene terephthalate and polyvinyl chloride are commonly referred to as PET and PVC, while foamed polystyrene and polymethyl methacrylate are known by their trademarked names, Styrofoam and Plexiglas (or Perspex). The plastic consumption will increase to 20 million tonnes a year in 2020 from the current 8 million tonnes a year in India. Plastics is one of the biggest contributor to India’s GDP with the growth rate of 12%-15% per annum, it houses over 50,000 manufacturers and employees of over 40 lakh workers in the plastics industry.
Polymers are chemical compounds whose molecules are very large, often resembling long chains made up of a seemingly endless series of interconnected links. The size of these molecules, as is explained in chemistry of industrial polymers, is extraordinary, ranging in the thousands and even millions of atomic mass units. Polymers have found uses in all spheres of life with demand for better materials, greater functional utility, more economical packaging and versatile and durable all-weather products. The per capita consumption of polymers in India is around 5.5 kg. The Government of India has prepared an ambitious plan to achieve a ten-fold increase in plastic exports (from $ 25 mn to 250 mn) to the US.
Polyethylene terephthalate is a thermoplastic polymer resin of the polyester family and is used in synthetic fibers; beverage, food and other liquid containers; thermoforming applications; and engineering resins often in combination with glass fiber. PET in its natural state is a colorless, semi-crystalline resin. Based on how it is processed, PET can be semi-rigid to rigid, and it is very lightweight. It makes a good gas and fair moisture barrier, as well as a good barrier to alcohol and solvents. Poly (vinyl chloride), is the third-most widely produced polymer, after polyethylene and polypropylene. PVC comes in two basic forms: rigid (sometimes abbreviated as RPVC) and flexible. The rigid form of PVC is used in construction for pipe and in profile applications such as doors and windows. It is also used for bottles, other non-food packaging, and cards (such as bank or membership cards). It can be made softer and more flexible by the addition of plasticizers, the most widely used being phthalates. 
Around 1.1 Million Metric Tons, out of which, Polyvinyl chloride (PVC) accounts for 0.36 Million Metric Tons, Polypropylene (PP) 0.27 Million Metric Tons and Polyethylene (PE) 0.46 Million Metric Tons. The quantum of imports increased further to 1.8 MMT with imports of Polyvinyl chloride (PVC), Polypropylene (PP) and Polyethylene (PE) rising to 0.70, 0.43 and 0.62 MMT. Replicating the growth in gross domestic product, polymer demand in India grew from 3.459 Million Metric ton per annum (MMtpa) in 2000 to 9.013 MMtpa in 2011 at a Compound Annual Growth Rate (CAGR) of 9.1%. Strong growth in the packaging sectors will drive the demand further to 14.315 MMtpa in 2016. To meet this growing demand, India increased its polymer production from 3.568 MMtpa in 2000 to 7.377 MMtpa in 2016. With an increase in demand the polymer consumption is expected to double by 2020, to about 20 million metric tons. 
Disposable is the ability of something to be disposed of or thrown away after use. A disposable (also called disposable product) is a product designed for a single use after which it is recycled or is disposed as solid waste. The term often implies cheapness and short-term convenience rather than medium to long-term durability. Polystyrene is a synthetic aromatic polymer made from the monomer styrene. Polystyrene can be solid or foamed. General purpose polystyrene is clear, hard, and rather brittle. It is an inexpensive resin per unit weight. It is a rather poor barrier to oxygen and water vapor and has a relatively low melting point. Polystyrene is one of the most widely used plastics, the scale of its production being several billion kilograms per year. India is growing at an average annual rate of 7.6% for the past five years and it is expected to continue growing at an equal if not faster rate. The rapid economic growth is increasing and enhancing employment and business opportunities and in turn increasing disposable incomes. As households with disposable incomes from Rs 200,000 to 1,000,000 a year comprises about 50 million people, roughly 5% of the population at present. By 2025 the size of middle class will increase to about 583 million people, or 41% of the population. The size of the Indian medical device industry will jump to INR 761 billion by 2017 registering a CAGR of 20% during 2012-17. 
The content of the book includes information about plastic. The major contents of this book are project profiles of projects like Plastics and Polymers Industry in India, Disposable Plastic Syringes, Flexible Polyurethane Foam, PVC Wires & Cables, Disposable Dishes, Knife, Fork & Cutlery Items (Spoon)Thermacol Cups, Glass and Plates, Pet Bottle from Pet Resin, PVC Flex Banner (Front Lit, Backlit & Vinyl),Wood Plastic Composite (WPC),HDPE/PP Woven Sacks, Pet Bottle Recycling, Plastic Injection, Moulded Products (Buckets, Tumblers, Tubs & Toilet Bowl Cleaning Brush),Disposable Plastic Cups, Plates & Glasses.
Project profile contains information like introduction, uses and applications, properties, manufacturing process, B.I.S. specifications, raw material details, process description, process flow diagram, suppliers of plant & machinery, suppliers of raw material, land & building, plant & machinery, fixed capital, working capital requirement/month, total working capital/month, cost of project, rate of return, breakeven point (B.E.P)
This book is very useful for new entrepreneurs, technical institutions, existing units and technocrats.

Introduction

A plastic material is any of a wide range of synthetic or semi-synthetic organic solids that

are malleable. Plastics are typically organic polymers of high molecular mass, but they often contain

other substances. They are usually synthetic, most commonly derived from petrochemicals, but many

are partially natural.

 

Due to their relatively low cost, ease of manufacture, versatility, and imperviousness to water,

plastics are used in an enormous and expanding range of products, from paper clips to spaceships. They

have already displaced many traditional materials, such as wood, stone, horn and bone, leather, paper,

metal, glass, and ceramic, in most of their former uses. In developed countries, about a third of plastic is

used in packaging and another third in buildings such as piping used in plumbing or vinyl siding. Other

uses include automobiles furniture, and toys. In the developing world, the ratios may be different - for

example, reportedly 42% of India's consumption is used in packaging.

Common Plastics and Uses

· Polyester (PES) – Fibers, textiles.

· Polyethylene terephthalate (PET) – Carbonated drinks bottles, peanut butter jars, plastic film,

microwavable packaging.

· Polyethylene (PE) – Wide range of inexpensive uses including supermarket bags, plastic bottles.

· High-density polyethylene (HDPE) – Detergent bottles, milk jugs, and molded plastic cases.

· Polyvinyl chloride (PVC) – Plumbing pipes and guttering, shower curtains, window frames,

flooring.

· Polyvinylidene chloride (PVDC) – Food packaging.

· Low-density polyethylene (LDPE) – Outdoor furniture, siding, floor tiles, shower curtains,

clamshell packaging.

· Polypropylene (PP) – Bottle caps, drinking straws, yogurt containers, appliances, car fenders

(bumpers), plastic pressure pipe systems.

· Polystyrene (PS) – Packaging foam, food containers, plastic tableware, disposable cups, plates,

cutlery, CD and cassette boxes.

· High impact polystyrene (HIPS) - Refrigerator liners, food packaging, and vending cups.

 

The Polymers

Polymers are chemical compounds whose molecules are very large, often resembling long

chains made up of a seemingly endless series of interconnected links. The size of these molecules, as is

explained in chemistry of industrial polymers, is extraordinary, ranging in the thousands and even

millions of atomic mass units (as opposed to the tens of atomic mass units commonly found in other

chemical compounds). The size of the molecules, together with their physical state and the structures

that they adopt, are the principal causes of the unique properties associated with plastics—including the

ability to be molded and shaped.

 

Reaction Injection Molding

One type of network-forming thermoset, polyurethane, is molded into parts such as automobile

bumpers and inside panels through a process known as reaction injection molding, or RIM. The two

liquid precursors of polyurethane are a multifunctional isocyanate and a prepolymer, a low-molecularweight

polyether or polyester bearing a multiplicity of reactive end-groups such as hydroxyl, amine, or

amide. In the presence of a catalyst such as a tin soap, the two reactants rapidly form a network joined

mainly by urethane groups. The reaction takes place so rapidly that the two precursors have to be

combined in a special mixing head and immediately introduced into the mold. However, once in the

mold, the product requires very little pressure to fill and conform to the mold—especially since a small

amount of gas is evolved in the injection process, expanding the polymer volume and reducing

resistance to flow. The low molding pressures allow relatively lightweight and inexpensive molds to be

used, even when large items such as bumper assemblies or refrigerator doors are formed.

 

A first success in recycling of plastics is Vinyloop, a recycling process and an approach of the

industry to separate PVC from other materials through a process of dissolution, filtration and separation

of contaminations. A solvent is used in a closed loop to elute PVC from the waste. This makes it possible

to recycle composite structure PVC waste which normally is being incinerated or put in a landfill.

Vinyloop-based recycled PVC's primary energy demand is 46 percent lower than conventional produced

PVC. The global warming potential is 39 percent lower. This is why the use of recycled material leads to

a significant better ecological footprint. This process was used after the Olympic Games in London 2012.

Parts of temporary Buildings like the Water Polo Arena or the Royal Artillery Barracks were recycled.

This way, the PVC Policy could be fulfilled which says that no PVC waste should be left after the games.

 

Plastics and Polymers Industry in India

INTRODUCTION

During the past 40–50 years, foamed polymers have found increasing importance in the world

market place due to the unique characteristics and properties they provide when compared to solid

plastics. While most thermosets and thermoplastics can be made in a foamed or cellular structure under

certain conditions, the materials known as polyurethanes have become predominant for many

applications in this field. Through the proper selection of the starting materials, foamed polyurethanes

can range in characteristics from extremely soft, resilient cushioning products to very tough and rigid

structural members. As varied as the products are, so too are the machines and processes used to

produce them. Certain other systems, such as polyureas, are also processed with the same equipment

as polyurethanes. The word polyurethane is somewhat misleading since, unlike most plastics, the final

product is not made by polymerizing a monomer. Instead, the products contain a number of

polyurethane groups in a complex structure that is controlled by the choice of starting materials and the

production conditions.

Commercial products are manufactured by the reactions of two liquids: isocyanate (NCO)

compounds and polyol (polyoxyalkalene) components, in the presence of catalysts and processing aids.

Basic isocyanate chemistry has been available for more than 100 years, but it was not used commercially

until the mid-1930s. During World War II, German polyurethane developments centered on products to

replace scarce materials. The major products were rigid foams and cast elastomers. Following the war,

the technology was exploited by the United States, and rapid advances were made in the development

of products and processes.

There are four major polyurethane foam manufacturers in New Zealand. This article is based on

the process used by Dunlop Flexible Foam in Auckland, although all manufacturers use a similar process.

Dunlop has been using a continuous process since 1985, and has a daily capacity of more the 15 tonnes

of polyurethane foam.

FLEXIBLE POLYURETHANE FOAM

Flexible polyurethane foam is used as cushioning for a variety of consumer and commercial

products, including bedding, furniture, automotive interiors, carpet underlay and packaging. Flexible

foam can be created in almost any variety of shapes and firmness. It is light, durable, supportive and

comfortable.

 

Thermoplastic polyurethane (TPU)

Thermoplastic polyurethane (TPU) offers a myriad of physical property combinations and

processing applications. It is highly elastic, flexible and resistant to abrasion, impact and weather. TPUs

can be colored or fabricated in a wide variety of methods and their use can increase a product's overall

durability.

 

Additives

Some polyurethane materials can be vulnerable to damage from heat, light, atmospheric

contaminants, and chlorine. For this reason, stabilizers are added to protect the polymer. One type of

stabilizer that protects against light degradation is a UV screener called hydroxybenzotriazole. To

protect against oxidation reactions, antioxidants are used. Various antioxidants are available such as

monomeric and polymeric hindered phenols. Compounds which inhibit discoloration caused by

atmospheric pollutants may also be added. These are typically materials with tertiary amine

functionality that can interact with the oxides of nitrogen in air pollution. For certain applications, ant

mildew additives are added to the polyurethane product. After the polymers are formed and removed

from the reaction vessels, they are naturally white. Therefore, colorants may be added to change their

aesthetic appearance. Common covalent compounds for polyurethane fibers are dispersed and acid

dyes.

 

PVC Wires & Cables

INTRODUCTION

The generation, transmission, and distribution of power involve electrical facilities, apparatus,

and components, to carry the electrical energy from its generating site to where it is utilized. An

important part of this power system is the cable system that is used exclusively to carry power from the

main substations to secondary substations at load centers. Low-voltage cable is used to distribute power

from the load centers to utilization equipment in conduits and ducts, even though other methods such

as cable trays, direct burial for outdoor applications, and aerial cable are used. Electrical, mechanical,

and environmental considerations are the main factors in selecting and applying cable systems for

distribution and utilization of electrical power.

Previously rubber insulated cables were in vogue but their life used to be short. Now days in the

field of insulated cables PVC cables have occupied an important place and in fact these are most

popular. Various types of PVC cables are available, e.g., cables for control, signaling, instrumentation,

rural electrification and house wiring, communication as well as for use in wires, automobiles, T.V.

electric welding etc.

POLYVINYL CHLORIDE (PVC) COMPOUNDS

PVC and polyethylene are the two main polymer types used for wire and cable insulation, with

PVC comprising about 2/3 of the insulation used for building wiring. Several grades of compounds are

detailed in these standards for both insulation and sheathing requirements. PVC compounds are

thermoplastic by nature and consequently are designed to operate within a prescribed temperature

range. Grades of PVC can therefore be selected to suit particular environment temperatures, with the

maximum conductor temperature for heat resisting grade PVC being 900C and the lowest operating

temperature grade PVC below minus 300C.

 


 

USES & APPLICATION

PVC wires & cables are used in home appliance, house wiring, T.V, VCR control panel, power

distribution & secondary transmissions etc. The main use of PVC wires & cables are in house wiring.

Since as the name suggests it’s used everywhere, where electricity is to be carried from one point to

another with safety.

Domestic cables & wires used extensively. These types of cable are used in house wiring, wiring

of T.V, Video & Control panel circuits. These types of wires are used where temporary wiring for

domestic use is necessary.

 

Disposable Dishes, Knife, Fork & Cutlery Items (Spoon)

 

INTRODUCTION

In the modern busy and first growing life, there is essentially require disposable dishes, knife,

fork and cuttlery items. It should be manufactured by using low valued hygenic raw material for

manufacturing of disposable dishes, knife, fork and cuttlery items. Mostly used raw material is used

engineered thermoplastic or special grade papers or wooden material or aluminium coated paper as

raw material. Plenty of raw materials are available in India. Plant and machineries, which is required for

manufacturing of the above mentioned products are also available indigenously in our country. There is

few technical expert available in this field who can provide total manufacturing process technology.

Annual market growth of these products is 5%. It can be assumed that there will be increase in busy life

in near future and demand growth will be increased proportionately. There are few organised

manufacturer available in India who are supplying their products in the Indian market as well as they are

exporting to neighboring countries. There is very negligible amount of environment pollution arises in

this product which can be controlled by proper treatment. As a whole this project is good one. New

entrepreneur may enter in this field of manufacturing will be successful.

 

Properties of Disposable Dishes, Knife, Fork and Cutlery Items

1. It should be light enough and low cost items.

2. It should be hygenic and should not support of microbial growth.

3. It may be washable.

4. It should not melt below 80°C.

 

Properties of Disposable Dishes, Knife, Fork and Cutlery Items

1. It should be light enough and low cost items.

2. It should be hygenic and should not support of microbial growth.

3. It may be washable.

4. It should not melt below 80°C.

 

Thermocol Cups, Glass and Plates

INTRODUCTION

"Foam" is generally known everywhere but in fact its' meaning is so wide. According to

translation "Foam" means, "expand" or "blow". Herewith we concern "Foam" as the expanded plastics.

There are many kinds of plastics in the world, any plastics when react with the Blowing Agent will

become "Foam" which generally called "Foam Plastics".

There are two kinds of Polystyrene Foams:

· Expandable Polystyrene / EPS usually use as packaging for many kind of products such as

television, electrical appliances, helmet, ice box, sheet foam and block foam for road

construction.

· Polystyrene Paper / PSP so called Extruded Polystyrene / XPS which use to produce food tray

and food box.

Thermocol has a particular characteristic: it gives the hand a sentation of velvety softness not

experienced in contact with traditional types of plastic. Until recently Thermocol has been employed

almost exclusively in the packing and thermoacustic isolation sectors; utilizing new processes and

sophisticated equipment has been possible to create containers for foods with a perfect retention of

liquids.

Thermocol is formed by the synthesizing of spherical particles consisting of air (at a rate of 98%)

contained within an infinite number of hollow cells. These cells, forming a structure of pellets fused

together, give consistency and rigidity to the final product.

 

USES & APPLICATIONS

Any product of any shape or size may be packaged in expanded polystyrene. The following only

touches on the possibilities in both the industrial and food packaging sectors using thermocol.

Foamed plastics materials have achieved a high degree for importance in the plastic industry.

Foams can be made soft and flexible to hard and rigid. Expanded polystyrene is one of such foams. It

may be used such as thermal insulation material; acoustic treatments shock protective packaging, etc.

Its properties can be varied widely in manufacture to meet both general and specific demands.

Custom-molded thermocol interior packaging has been highly effective in protecting sensitive

electronic components, consumer goods and office equipment; its mold ability allows interior packaging

components to hold products snugly in place. High insulating properties and moisture resistance have

made thermocol a popular choice in the food packaging, medical and pharmaceutical industries.

Thermocol is also used to protect a myriad of other products used for component assembly, during

internal distribution and storage and delivery to the end user.

 

Disposable Plastic Cups, Plates & Glasses

INTRODUCTION

The plastic industry in India plays a very important and key role in Industrializations. A wide

spectrum of plastics and articles manufactured by the industry has touched the life of every Indian in

many ways through consumer plastics. Now we have entered into another era of plastic consumer

goods continuously replacing the traditional items. The disposable plastic cups are manufactured by

thermoforming technique. They are fast replacing conventional cups. Ice-cream and other dairy

products are packed in disposable cups. Besides Ice-cream industry, hotels, restaurants, canteens etc.

have been increasingly using disposable cups as against conventional glass-wares or ceramic cups.

Disposable cups are mainly used for food items and are made out of polypropylene or polystyrene

sheets. Sheets having thickness 0.35mm to 18mm are used for these items in thermoforming machine.

Disposable cups, glasses, plates and spoons are used in daily life nowadays. In addition to be

used at home these are largely used during at parties and other functions.

The use of disposable items is increasing day by day because of better hygenic conditions, low

cost, easy usability and impressive appearance. Plastic cups are largely used for tea, juices, coffee and

other purposes.


 

APPLICATION

Thermoformed disposables are generally used for Tea, Water and Packing of Beverages etc.

These Thermoform shapes are created from a process where a sheet of plastic is heated and vacuumed

on top of a model or die. The die can be made up from variety of materials. There are different

industries using thermoformed cups and trays like:

 

APPLICATION OF THERMOFORMING TECHNIQUE

Thermoforming technique is applied to a wide variety of thermoplastic materials such as

polystyrene, polyesters, ABS, polypropylene and polyvinyl chloride. Main applications are in industrial,

automotive and packaging sectors.

In industrial sector major applications consist construction, transportation and refrigeration

industries. Auto headliners, fender wells, overhead panels, door panels, refrigerator liners, freezer

panels, mould liners, casting inserts etc. are typical parts.

The largest application of thermoformed products is in packaging field. Articles like trays, cups,

cartons, fast food disposables and carryouts, disposable tableware, caps and containers, various types of

foodstuffs are packed in thermoformed products.

 

Wood Plastic Composite (WPC)

INTRODUCTION

Wood-plastic composites (WPCs) are composite materials made of wood fiber/wood flour and

thermoplastic(s) (includes PE, PP, PVC etc.).Chemical additives seem practically "invisible" (except

mineral fillers and pigments, if added) in the composite structure. They provide for integration of

polymer and wood flour (powder) while facilitating optimal processing conditions. In addition to wood

fiber and plastic, WPCs can also contain other lingo-cellulosic and/or inorganic filler materials. WPCs are

a subset of a larger category of materials called natural fiber plastic composites (NFPCs), which may

contain no cellulose-based fiber fillers such as pulp fibers, peanut hulls, bamboo, and straw, dig estate,

etc.

Wood plastic composites (WPCs) are roughly 50:50 mixtures of thermoplastic polymers and

small wood particles. The wood and thermoplastics are usually compounded above the melting

temperature of the thermoplastic polymers and then further processed to make various WPC products.

WPC can be manufactured in a variety of colors, shapes and sizes, and with different surface textures.

Depending on the processing method, WPCs can be formed into almost any shape and thus are used for

a wide variety of applications, including windows, door frames, interior panels in cars, railings, fences,

landscaping timbers, cladding and siding, park benches, molding and furniture.

Wood plastic composite is good to solve the problem arises in the environment. There is scope

of use agricultural waste product. In this case we will use waste polypropylene or polyethylene, or it may

be used virgin polypropylene or polyethylene, waste wood floor. Rice husk, plastic additives like (DOP,

DBP etc.). There are different percentages of raw material used for the production of pallets decking,

outdoor furniture like park bench, windows and door shutter frames etc. This product is manufactured

by using automatic imported machineries or by using indigenous machines.

 

PROPERTIES

Wood-plastic composites exhibit hybrid properties of wood and plastic. In general, adding wood

to a thermoplastic matrix increases the mechanical properties and thermal stability when compared to

the solid thermoplastics. Conversely, the thermoplastic component can present moisture barriers to the

wood elements, decreasing the water adsorption and swelling characteristics as compared to wood and

traditional wood composites.

· It may be fire proof.

· It is waterproof, comparative light, high strength, and long self-life.

· It can be stored in the room at room temperature

· It is comparatively low-density product.

· It has smooth body; there are very rare cases of rough surfaces available.

 

ADVANGAGES

· The presence of wood in a plastic matrix can result in a stiffer and lower-cost material than if

plastic alone was used.

· Also, the compression properties (resistance to crushing) for most WPCs are superior to that of

wood loaded perpendicular to the grain.

• The plastic in the product is not subject to water absorption or biological attack, so the WPC can

have lower maintenance requirements than solid wood.

• WPC lumber will not warp, splinter or check.

• WPCs are also potentially recyclable, because recovered material can be melted and reformed.

• WPCs may be identified as sustainable materials, due to the wood particles predominately being

a byproduct of sawmill and other wood-processing waste streams, and because much of the

plastic is derived from consumer and industrial recycling efforts.

• WPCs offer great flexibility in the shapes and colors of the materials produced.

 

Pet Bottle Recycling

 

INTRODUCTION

Polyethylene terephthalate is a thermoplastic polymer resin of the polyester family and is used

in synthetic fibers; beverage, food and other liquid containers; thermoforming applications; and

engineering resins often in combination with glass fiber. It may also be referred to by the brand

name Dacron; in Britain, Terylene; or, in Russia and former Soviet Union, Lavsan. The majority of the

world's PET production is for synthetic fibers (in excess of 60%), with bottle production accounting for

about 30% of global demand. In the context of textile applications, PET is referred to by its common

name, polyester, whereas the acronym PETis generally used in relation to packaging. Polyester makes up

about 18% of world polymer production and is the third-most-produced polymer; polyethylene (PE)

and polypropylene (PP) are first and second, respectively.

PET consists of polymerized units of the monomer ethylene terephthalate, with repeating

C10H8O4 units. PET is commonly recycled, and has the number 1 as its recycling symbol.

PET-bottles contribute increasingly to the generation of waste and litter especially in developing

countries. One-way discarded PET-bottles have a negative impact on the environments because they:

· Waste resources

· Pollute soil, rivers, coastal areas

· Pollute the air when burned

· Consume a lot of landfill site space

· Get scattered and make the environment look untidy.

140 Detailed Project Profiles on Hi-Tech Plastic

 

USES & APPLICATIONS

Because PET is an excellent water and moisture barrier material, plastic bottles made from PET

are widely used for soft drinks. For certain specialty bottles, such as those designated for beer

containment, PET sandwiches an additional polyvinyl alcohol (PVOH) layer to further reduce its oxygen

permeability.

Biaxially oriented PET film can be aluminized by evaporating a thin film of metal onto it to

reduce its permeability, and to make it reflective and opaque (MPET). These properties are useful in

many applications, including flexible food packaging and thermal insulation such as "space blankets".

Because of its high mechanical strength, PET film is often used in tape applications, such as the carrier

for magnetic tape or backing for pressure-sensitive adhesive tapes. It is used to make the fabric polar

fleece.

 

Modernization of Pet Bottle

· The National Recycling Coalition cites PET as one of the top materials for food containers

because it is 100% recyclable.

· Recycling of PET bottles is strongly encouraged because PET can be turned back into new

containers, as well as fleece coats, clothing, pillows, carpets and a variety of other consumer

products.

· Modern PET bottles are not only recyclable but also use fewer Resources than ever before. In

many cases, bottles also require less energy and generate fewer greenhouse gas emissions than

other popular packaging alternatives, such as glass and aluminium.

 

 

 

 

PVC Flex Banner (Front Lit, Backlit & Vinyl)

INTRODUCTION

PVC Flex is best to all Digital printer specially designed for Indian market. Due to stable chemical

character and excellent ink absorbency, PVC Flex will bring wonderful digital printing images for large

format picture advertisements. In virtue of the high classic quality and best sales service, nowadays PVC

Flex is playing an important role in signage & Banner Advertising industry.

Large format digital printing flex media, PVC sheeting for digital printing like front lit flex in

various gsm 260 gsm, 280 gsm, 300 gsm, 320 gsm, 340 gsm and 440 gsm and back lit flex in 550 gsm and

610 gsm and also we have vinyl, star flex type media.

PVC flex is made out of PVC and fabric raw material, specially designed for solvent printing

industry. It is suitable for indoor and outdoor printing used in billboard, display, banners and exhibition

booth decoration.

Flex is a sheet of polythene widely used to deliver high quality digital print for outdoor hoardings

and banner, mainly printed by large color plotters in CMYK mode. These prints are efficient, Low-cost

and durable substitutes of hand painted hoarding and hand written banner.

TYPES OF PVC FLEX

Frontlit Flex & Backlit Flex

Laminated Backlit flex products are widely used for indoor and outdoor advertisement. Its

surface has fine ink absorption which is compatible for all solvent-based printers such as Vutek, Nur,

Scitex, etc. With special treatment, the products have a good property of anti-microbial and anti-aging.

Backlit flex is a good translucent media material design for backlit displays which perform a high

printing quality while printing a single strike image. Its certain finishing treatment makes ideal

performance.

FEATURES

· Glossy surface,

· White substrate finishing for large format digital printing,

· Pure white translucent substrates for backlit displays,

· Applicable to Vutek, Scitex, Nur, Infinity, Flora, etc.

· Weather resistant (anti-UV, anti rain and frost resistant)

RAW MATERIALS

PVC

PVC, PE, PP and PS are general purpose plastics. The features of the particular plastic are

determined by its chemical composition and type of molecular structure (molecular formation:

crystalline/amorphous structure) PVC has an amorphous structure with polar chlorine atoms in the

molecular structure. Having chlorine atoms and the amorphous molecular structure are inseparably

related. Although plastics seem very similar in the context of daily use, PVC has completely different

features in terms of performance and functions compared with olefin plastics which have only carbon

and hydrogen atoms in their molecular structures.

Chemical stability is a common feature among substances containing halogens such as chlorine

and fluorine. This applies to PVC resins, which furthermore possess fire retarding properties, durability,

and oil/chemical resistance.

Fire Retarding Properties

PVC has inherently superior fire retarding properties due to its chlorine content, even in the

absence of fire retardants. For example, the ignition temperature of PVC is as high as 455°C, and is a

material with less risk for fire incidents since it is not ignited easily furthermore, the heat released in

burning is considerably lower with PVC, when compared with those for PE and PP. PVC therefore

contributes much less to spreading fire to nearby materials even while burning. Therefore, PVC is very

suitable for safety reasons in products close to people’s daily lives.

 

Formulating PVC Products

Before PVC can be made into products, it has to be combined with a range of special additives.

The essential additives for all PVC materials are stabilizers and lubricants; in the case of flexible PVC,

Plasticizers are also incorporated. Other additives, which may be used, include fillers, processing aids,

impact modifiers and pigments. Additives will influence or determine the mechanical properties, light

and thermal stability, colour, clarity and electrical properties of the product. Once the additives have

been selected, they are mixed with the polymer in a process called compounding. One method uses an

intensive high-speed mixer that intimately blends all the ingredients. The result is a powder, known as a

‘dry blend’, which is then fed into the processing equipment.

 

PLASTICIZERS

A plasticizer is a substance which when added to a material, usually a plastic, makes it flexible,

resilient and easier to handle.

Early examples of Plasticizers include water to soften clay and oils to plasticise pitch for

waterproofing ancient boats. There are more than 300 different types of Plasticizers of which about 50-

100 are in commercial use. The most commonly used are phthalates and adipates.

PVC is basically rigid at normal temperature. This is due to the short distances between the

molecules since there are strong pulling forces between them (intermolecular forces). When heated, the

energies of molecular motions become greater than the intermolecular forces, which widen molecular

distances, resulting in softening of the resin. When plasticizers are added to PVC at this stage, the

plasticizer molecules make their way between the PVC molecules and prevent the PVC polymer

molecules from coming closer with each other. Consequently the polymer molecules are kept apart

even at normal temperature and softness is maintained. This is the role of Plasticizers and such process

is technically called plasticizing.

PVC polymer molecules have positive and negative polarities inside, while plasticizer molecules

also have such polar and non-polar parts. The PVC polymer molecules and the plasticizer molecules are

electrically attracted to each other, and the non-polar parts widen the distance among the polymer

molecules to keep softness. PVC products, which are softened by Plasticizers, are called soft (flexible)

PVC products. In Europe, about 30 % of the total PVC resin production is used for flexible PVC products.

 

 

Introduction

A plastic material is any of a wide range of synthetic or semi-synthetic organic solids that

are malleable. Plastics are typically organic polymers of high molecular mass, but they often contain

other substances. They are usually synthetic, most commonly derived from petrochemicals, but many

are partially natural.

 

Due to their relatively low cost, ease of manufacture, versatility, and imperviousness to water,

plastics are used in an enormous and expanding range of products, from paper clips to spaceships. They

have already displaced many traditional materials, such as wood, stone, horn and bone, leather, paper,

metal, glass, and ceramic, in most of their former uses. In developed countries, about a third of plastic is

used in packaging and another third in buildings such as piping used in plumbing or vinyl siding. Other

uses include automobiles furniture, and toys. In the developing world, the ratios may be different - for

example, reportedly 42% of India's consumption is used in packaging.

Common Plastics and Uses

· Polyester (PES) – Fibers, textiles.

· Polyethylene terephthalate (PET) – Carbonated drinks bottles, peanut butter jars, plastic film,

microwavable packaging.

· Polyethylene (PE) – Wide range of inexpensive uses including supermarket bags, plastic bottles.

· High-density polyethylene (HDPE) – Detergent bottles, milk jugs, and molded plastic cases.

· Polyvinyl chloride (PVC) – Plumbing pipes and guttering, shower curtains, window frames,

flooring.

· Polyvinylidene chloride (PVDC) – Food packaging.

· Low-density polyethylene (LDPE) – Outdoor furniture, siding, floor tiles, shower curtains,

clamshell packaging.

· Polypropylene (PP) – Bottle caps, drinking straws, yogurt containers, appliances, car fenders

(bumpers), plastic pressure pipe systems.

· Polystyrene (PS) – Packaging foam, food containers, plastic tableware, disposable cups, plates,

cutlery, CD and cassette boxes.

· High impact polystyrene (HIPS) - Refrigerator liners, food packaging, and vending cups.

 

The Polymers

Polymers are chemical compounds whose molecules are very large, often resembling long

chains made up of a seemingly endless series of interconnected links. The size of these molecules, as is

explained in chemistry of industrial polymers, is extraordinary, ranging in the thousands and even

millions of atomic mass units (as opposed to the tens of atomic mass units commonly found in other

chemical compounds). The size of the molecules, together with their physical state and the structures

that they adopt, are the principal causes of the unique properties associated with plastics—including the

ability to be molded and shaped.

 

Reaction Injection Molding

One type of network-forming thermoset, polyurethane, is molded into parts such as automobile

bumpers and inside panels through a process known as reaction injection molding, or RIM. The two

liquid precursors of polyurethane are a multifunctional isocyanate and a prepolymer, a low-molecularweight

polyether or polyester bearing a multiplicity of reactive end-groups such as hydroxyl, amine, or

amide. In the presence of a catalyst such as a tin soap, the two reactants rapidly form a network joined

mainly by urethane groups. The reaction takes place so rapidly that the two precursors have to be

combined in a special mixing head and immediately introduced into the mold. However, once in the

mold, the product requires very little pressure to fill and conform to the mold—especially since a small

amount of gas is evolved in the injection process, expanding the polymer volume and reducing

resistance to flow. The low molding pressures allow relatively lightweight and inexpensive molds to be

used, even when large items such as bumper assemblies or refrigerator doors are formed.

 

A first success in recycling of plastics is Vinyloop, a recycling process and an approach of the

industry to separate PVC from other materials through a process of dissolution, filtration and separation

of contaminations. A solvent is used in a closed loop to elute PVC from the waste. This makes it possible

to recycle composite structure PVC waste which normally is being incinerated or put in a landfill.

Vinyloop-based recycled PVC's primary energy demand is 46 percent lower than conventional produced

PVC. The global warming potential is 39 percent lower. This is why the use of recycled material leads to

a significant better ecological footprint. This process was used after the Olympic Games in London 2012.

Parts of temporary Buildings like the Water Polo Arena or the Royal Artillery Barracks were recycled.

This way, the PVC Policy could be fulfilled which says that no PVC waste should be left after the games.

 

Plastics and Polymers Industry in India

INTRODUCTION

During the past 40–50 years, foamed polymers have found increasing importance in the world

market place due to the unique characteristics and properties they provide when compared to solid

plastics. While most thermosets and thermoplastics can be made in a foamed or cellular structure under

certain conditions, the materials known as polyurethanes have become predominant for many

applications in this field. Through the proper selection of the starting materials, foamed polyurethanes

can range in characteristics from extremely soft, resilient cushioning products to very tough and rigid

structural members. As varied as the products are, so too are the machines and processes used to

produce them. Certain other systems, such as polyureas, are also processed with the same equipment

as polyurethanes. The word polyurethane is somewhat misleading since, unlike most plastics, the final

product is not made by polymerizing a monomer. Instead, the products contain a number of

polyurethane groups in a complex structure that is controlled by the choice of starting materials and the

production conditions.

Commercial products are manufactured by the reactions of two liquids: isocyanate (NCO)

compounds and polyol (polyoxyalkalene) components, in the presence of catalysts and processing aids.

Basic isocyanate chemistry has been available for more than 100 years, but it was not used commercially

until the mid-1930s. During World War II, German polyurethane developments centered on products to

replace scarce materials. The major products were rigid foams and cast elastomers. Following the war,

the technology was exploited by the United States, and rapid advances were made in the development

of products and processes.

There are four major polyurethane foam manufacturers in New Zealand. This article is based on

the process used by Dunlop Flexible Foam in Auckland, although all manufacturers use a similar process.

Dunlop has been using a continuous process since 1985, and has a daily capacity of more the 15 tonnes

of polyurethane foam.

FLEXIBLE POLYURETHANE FOAM

Flexible polyurethane foam is used as cushioning for a variety of consumer and commercial

products, including bedding, furniture, automotive interiors, carpet underlay and packaging. Flexible

foam can be created in almost any variety of shapes and firmness. It is light, durable, supportive and

comfortable.

 

Thermoplastic polyurethane (TPU)

Thermoplastic polyurethane (TPU) offers a myriad of physical property combinations and

processing applications. It is highly elastic, flexible and resistant to abrasion, impact and weather. TPUs

can be colored or fabricated in a wide variety of methods and their use can increase a product's overall

durability.

 

Additives

Some polyurethane materials can be vulnerable to damage from heat, light, atmospheric

contaminants, and chlorine. For this reason, stabilizers are added to protect the polymer. One type of

stabilizer that protects against light degradation is a UV screener called hydroxybenzotriazole. To

protect against oxidation reactions, antioxidants are used. Various antioxidants are available such as

monomeric and polymeric hindered phenols. Compounds which inhibit discoloration caused by

atmospheric pollutants may also be added. These are typically materials with tertiary amine

functionality that can interact with the oxides of nitrogen in air pollution. For certain applications, ant

mildew additives are added to the polyurethane product. After the polymers are formed and removed

from the reaction vessels, they are naturally white. Therefore, colorants may be added to change their

aesthetic appearance. Common covalent compounds for polyurethane fibers are dispersed and acid

dyes.

 

PVC Wires & Cables

INTRODUCTION

The generation, transmission, and distribution of power involve electrical facilities, apparatus,

and components, to carry the electrical energy from its generating site to where it is utilized. An

important part of this power system is the cable system that is used exclusively to carry power from the

main substations to secondary substations at load centers. Low-voltage cable is used to distribute power

from the load centers to utilization equipment in conduits and ducts, even though other methods such

as cable trays, direct burial for outdoor applications, and aerial cable are used. Electrical, mechanical,

and environmental considerations are the main factors in selecting and applying cable systems for

distribution and utilization of electrical power.

Previously rubber insulated cables were in vogue but their life used to be short. Now days in the

field of insulated cables PVC cables have occupied an important place and in fact these are most

popular. Various types of PVC cables are available, e.g., cables for control, signaling, instrumentation,

rural electrification and house wiring, communication as well as for use in wires, automobiles, T.V.

electric welding etc.

POLYVINYL CHLORIDE (PVC) COMPOUNDS

PVC and polyethylene are the two main polymer types used for wire and cable insulation, with

PVC comprising about 2/3 of the insulation used for building wiring. Several grades of compounds are

detailed in these standards for both insulation and sheathing requirements. PVC compounds are

thermoplastic by nature and consequently are designed to operate within a prescribed temperature

range. Grades of PVC can therefore be selected to suit particular environment temperatures, with the

maximum conductor temperature for heat resisting grade PVC being 900C and the lowest operating

temperature grade PVC below minus 300C.

 


 

USES & APPLICATION

PVC wires & cables are used in home appliance, house wiring, T.V, VCR control panel, power

distribution & secondary transmissions etc. The main use of PVC wires & cables are in house wiring.

Since as the name suggests it’s used everywhere, where electricity is to be carried from one point to

another with safety.

Domestic cables & wires used extensively. These types of cable are used in house wiring, wiring

of T.V, Video & Control panel circuits. These types of wires are used where temporary wiring for

domestic use is necessary.

 

Disposable Dishes, Knife, Fork & Cutlery Items (Spoon)

 

INTRODUCTION

In the modern busy and first growing life, there is essentially require disposable dishes, knife,

fork and cuttlery items. It should be manufactured by using low valued hygenic raw material for

manufacturing of disposable dishes, knife, fork and cuttlery items. Mostly used raw material is used

engineered thermoplastic or special grade papers or wooden material or aluminium coated paper as

raw material. Plenty of raw materials are available in India. Plant and machineries, which is required for

manufacturing of the above mentioned products are also available indigenously in our country. There is

few technical expert available in this field who can provide total manufacturing process technology.

Annual market growth of these products is 5%. It can be assumed that there will be increase in busy life

in near future and demand growth will be increased proportionately. There are few organised

manufacturer available in India who are supplying their products in the Indian market as well as they are

exporting to neighboring countries. There is very negligible amount of environment pollution arises in

this product which can be controlled by proper treatment. As a whole this project is good one. New

entrepreneur may enter in this field of manufacturing will be successful.

 

Properties of Disposable Dishes, Knife, Fork and Cutlery Items

1. It should be light enough and low cost items.

2. It should be hygenic and should not support of microbial growth.

3. It may be washable.

4. It should not melt below 80°C.

 

Properties of Disposable Dishes, Knife, Fork and Cutlery Items

1. It should be light enough and low cost items.

2. It should be hygenic and should not support of microbial growth.

3. It may be washable.

4. It should not melt below 80°C.

 

Thermocol Cups, Glass and Plates

INTRODUCTION

"Foam" is generally known everywhere but in fact its' meaning is so wide. According to

translation "Foam" means, "expand" or "blow". Herewith we concern "Foam" as the expanded plastics.

There are many kinds of plastics in the world, any plastics when react with the Blowing Agent will

become "Foam" which generally called "Foam Plastics".

There are two kinds of Polystyrene Foams:

· Expandable Polystyrene / EPS usually use as packaging for many kind of products such as

television, electrical appliances, helmet, ice box, sheet foam and block foam for road

construction.

· Polystyrene Paper / PSP so called Extruded Polystyrene / XPS which use to produce food tray

and food box.

Thermocol has a particular characteristic: it gives the hand a sentation of velvety softness not

experienced in contact with traditional types of plastic. Until recently Thermocol has been employed

almost exclusively in the packing and thermoacustic isolation sectors; utilizing new processes and

sophisticated equipment has been possible to create containers for foods with a perfect retention of

liquids.

Thermocol is formed by the synthesizing of spherical particles consisting of air (at a rate of 98%)

contained within an infinite number of hollow cells. These cells, forming a structure of pellets fused

together, give consistency and rigidity to the final product.

 

USES & APPLICATIONS

Any product of any shape or size may be packaged in expanded polystyrene. The following only

touches on the possibilities in both the industrial and food packaging sectors using thermocol.

Foamed plastics materials have achieved a high degree for importance in the plastic industry.

Foams can be made soft and flexible to hard and rigid. Expanded polystyrene is one of such foams. It

may be used such as thermal insulation material; acoustic treatments shock protective packaging, etc.

Its properties can be varied widely in manufacture to meet both general and specific demands.

Custom-molded thermocol interior packaging has been highly effective in protecting sensitive

electronic components, consumer goods and office equipment; its mold ability allows interior packaging

components to hold products snugly in place. High insulating properties and moisture resistance have

made thermocol a popular choice in the food packaging, medical and pharmaceutical industries.

Thermocol is also used to protect a myriad of other products used for component assembly, during

internal distribution and storage and delivery to the end user.

 

Disposable Plastic Cups, Plates & Glasses

INTRODUCTION

The plastic industry in India plays a very important and key role in Industrializations. A wide

spectrum of plastics and articles manufactured by the industry has touched the life of every Indian in

many ways through consumer plastics. Now we have entered into another era of plastic consumer

goods continuously replacing the traditional items. The disposable plastic cups are manufactured by

thermoforming technique. They are fast replacing conventional cups. Ice-cream and other dairy

products are packed in disposable cups. Besides Ice-cream industry, hotels, restaurants, canteens etc.

have been increasingly using disposable cups as against conventional glass-wares or ceramic cups.

Disposable cups are mainly used for food items and are made out of polypropylene or polystyrene

sheets. Sheets having thickness 0.35mm to 18mm are used for these items in thermoforming machine.

Disposable cups, glasses, plates and spoons are used in daily life nowadays. In addition to be

used at home these are largely used during at parties and other functions.

The use of disposable items is increasing day by day because of better hygenic conditions, low

cost, easy usability and impressive appearance. Plastic cups are largely used for tea, juices, coffee and

other purposes.


 

APPLICATION

Thermoformed disposables are generally used for Tea, Water and Packing of Beverages etc.

These Thermoform shapes are created from a process where a sheet of plastic is heated and vacuumed

on top of a model or die. The die can be made up from variety of materials. There are different

industries using thermoformed cups and trays like:

 

APPLICATION OF THERMOFORMING TECHNIQUE

Thermoforming technique is applied to a wide variety of thermoplastic materials such as

polystyrene, polyesters, ABS, polypropylene and polyvinyl chloride. Main applications are in industrial,

automotive and packaging sectors.

In industrial sector major applications consist construction, transportation and refrigeration

industries. Auto headliners, fender wells, overhead panels, door panels, refrigerator liners, freezer

panels, mould liners, casting inserts etc. are typical parts.

The largest application of thermoformed products is in packaging field. Articles like trays, cups,

cartons, fast food disposables and carryouts, disposable tableware, caps and containers, various types of

foodstuffs are packed in thermoformed products.

 

Wood Plastic Composite (WPC)

INTRODUCTION

Wood-plastic composites (WPCs) are composite materials made of wood fiber/wood flour and

thermoplastic(s) (includes PE, PP, PVC etc.).Chemical additives seem practically "invisible" (except

mineral fillers and pigments, if added) in the composite structure. They provide for integration of

polymer and wood flour (powder) while facilitating optimal processing conditions. In addition to wood

fiber and plastic, WPCs can also contain other lingo-cellulosic and/or inorganic filler materials. WPCs are

a subset of a larger category of materials called natural fiber plastic composites (NFPCs), which may

contain no cellulose-based fiber fillers such as pulp fibers, peanut hulls, bamboo, and straw, dig estate,

etc.

Wood plastic composites (WPCs) are roughly 50:50 mixtures of thermoplastic polymers and

small wood particles. The wood and thermoplastics are usually compounded above the melting

temperature of the thermoplastic polymers and then further processed to make various WPC products.

WPC can be manufactured in a variety of colors, shapes and sizes, and with different surface textures.

Depending on the processing method, WPCs can be formed into almost any shape and thus are used for

a wide variety of applications, including windows, door frames, interior panels in cars, railings, fences,

landscaping timbers, cladding and siding, park benches, molding and furniture.

Wood plastic composite is good to solve the problem arises in the environment. There is scope

of use agricultural waste product. In this case we will use waste polypropylene or polyethylene, or it may

be used virgin polypropylene or polyethylene, waste wood floor. Rice husk, plastic additives like (DOP,

DBP etc.). There are different percentages of raw material used for the production of pallets decking,

outdoor furniture like park bench, windows and door shutter frames etc. This product is manufactured

by using automatic imported machineries or by using indigenous machines.

 

PROPERTIES

Wood-plastic composites exhibit hybrid properties of wood and plastic. In general, adding wood

to a thermoplastic matrix increases the mechanical properties and thermal stability when compared to

the solid thermoplastics. Conversely, the thermoplastic component can present moisture barriers to the

wood elements, decreasing the water adsorption and swelling characteristics as compared to wood and

traditional wood composites.

· It may be fire proof.

· It is waterproof, comparative light, high strength, and long self-life.

· It can be stored in the room at room temperature

· It is comparatively low-density product.

· It has smooth body; there are very rare cases of rough surfaces available.

 

ADVANGAGES

· The presence of wood in a plastic matrix can result in a stiffer and lower-cost material than if

plastic alone was used.

· Also, the compression properties (resistance to crushing) for most WPCs are superior to that of

wood loaded perpendicular to the grain.

• The plastic in the product is not subject to water absorption or biological attack, so the WPC can

have lower maintenance requirements than solid wood.

• WPC lumber will not warp, splinter or check.

• WPCs are also potentially recyclable, because recovered material can be melted and reformed.

• WPCs may be identified as sustainable materials, due to the wood particles predominately being

a byproduct of sawmill and other wood-processing waste streams, and because much of the

plastic is derived from consumer and industrial recycling efforts.

• WPCs offer great flexibility in the shapes and colors of the materials produced.

 

Pet Bottle Recycling

 

INTRODUCTION

Polyethylene terephthalate is a thermoplastic polymer resin of the polyester family and is used

in synthetic fibers; beverage, food and other liquid containers; thermoforming applications; and

engineering resins often in combination with glass fiber. It may also be referred to by the brand

name Dacron; in Britain, Terylene; or, in Russia and former Soviet Union, Lavsan. The majority of the

world's PET production is for synthetic fibers (in excess of 60%), with bottle production accounting for

about 30% of global demand. In the context of textile applications, PET is referred to by its common

name, polyester, whereas the acronym PETis generally used in relation to packaging. Polyester makes up

about 18% of world polymer production and is the third-most-produced polymer; polyethylene (PE)

and polypropylene (PP) are first and second, respectively.

PET consists of polymerized units of the monomer ethylene terephthalate, with repeating

C10H8O4 units. PET is commonly recycled, and has the number 1 as its recycling symbol.

PET-bottles contribute increasingly to the generation of waste and litter especially in developing

countries. One-way discarded PET-bottles have a negative impact on the environments because they:

· Waste resources

· Pollute soil, rivers, coastal areas

· Pollute the air when burned

· Consume a lot of landfill site space

· Get scattered and make the environment look untidy.

140 Detailed Project Profiles on Hi-Tech Plastic

 

USES & APPLICATIONS

Because PET is an excellent water and moisture barrier material, plastic bottles made from PET

are widely used for soft drinks. For certain specialty bottles, such as those designated for beer

containment, PET sandwiches an additional polyvinyl alcohol (PVOH) layer to further reduce its oxygen

permeability.

Biaxially oriented PET film can be aluminized by evaporating a thin film of metal onto it to

reduce its permeability, and to make it reflective and opaque (MPET). These properties are useful in

many applications, including flexible food packaging and thermal insulation such as "space blankets".

Because of its high mechanical strength, PET film is often used in tape applications, such as the carrier

for magnetic tape or backing for pressure-sensitive adhesive tapes. It is used to make the fabric polar

fleece.

 

Modernization of Pet Bottle

· The National Recycling Coalition cites PET as one of the top materials for food containers

because it is 100% recyclable.

· Recycling of PET bottles is strongly encouraged because PET can be turned back into new

containers, as well as fleece coats, clothing, pillows, carpets and a variety of other consumer

products.

· Modern PET bottles are not only recyclable but also use fewer Resources than ever before. In

many cases, bottles also require less energy and generate fewer greenhouse gas emissions than

other popular packaging alternatives, such as glass and aluminium.

 

 

 

 

PVC Flex Banner (Front Lit, Backlit & Vinyl)

INTRODUCTION

PVC Flex is best to all Digital printer specially designed for Indian market. Due to stable chemical

character and excellent ink absorbency, PVC Flex will bring wonderful digital printing images for large

format picture advertisements. In virtue of the high classic quality and best sales service, nowadays PVC

Flex is playing an important role in signage & Banner Advertising industry.

Large format digital printing flex media, PVC sheeting for digital printing like front lit flex in

various gsm 260 gsm, 280 gsm, 300 gsm, 320 gsm, 340 gsm and 440 gsm and back lit flex in 550 gsm and

610 gsm and also we have vinyl, star flex type media.

PVC flex is made out of PVC and fabric raw material, specially designed for solvent printing

industry. It is suitable for indoor and outdoor printing used in billboard, display, banners and exhibition

booth decoration.

Flex is a sheet of polythene widely used to deliver high quality digital print for outdoor hoardings

and banner, mainly printed by large color plotters in CMYK mode. These prints are efficient, Low-cost

and durable substitutes of hand painted hoarding and hand written banner.

TYPES OF PVC FLEX

Frontlit Flex & Backlit Flex

Laminated Backlit flex products are widely used for indoor and outdoor advertisement. Its

surface has fine ink absorption which is compatible for all solvent-based printers such as Vutek, Nur,

Scitex, etc. With special treatment, the products have a good property of anti-microbial and anti-aging.

Backlit flex is a good translucent media material design for backlit displays which perform a high

printing quality while printing a single strike image. Its certain finishing treatment makes ideal

performance.

FEATURES

· Glossy surface,

· White substrate finishing for large format digital printing,

· Pure white translucent substrates for backlit displays,

· Applicable to Vutek, Scitex, Nur, Infinity, Flora, etc.

· Weather resistant (anti-UV, anti rain and frost resistant)

RAW MATERIALS

PVC

PVC, PE, PP and PS are general purpose plastics. The features of the particular plastic are

determined by its chemical composition and type of molecular structure (molecular formation:

crystalline/amorphous structure) PVC has an amorphous structure with polar chlorine atoms in the

molecular structure. Having chlorine atoms and the amorphous molecular structure are inseparably

related. Although plastics seem very similar in the context of daily use, PVC has completely different

features in terms of performance and functions compared with olefin plastics which have only carbon

and hydrogen atoms in their molecular structures.

Chemical stability is a common feature among substances containing halogens such as chlorine

and fluorine. This applies to PVC resins, which furthermore possess fire retarding properties, durability,

and oil/chemical resistance.

Fire Retarding Properties

PVC has inherently superior fire retarding properties due to its chlorine content, even in the

absence of fire retardants. For example, the ignition temperature of PVC is as high as 455°C, and is a

material with less risk for fire incidents since it is not ignited easily furthermore, the heat released in

burning is considerably lower with PVC, when compared with those for PE and PP. PVC therefore

contributes much less to spreading fire to nearby materials even while burning. Therefore, PVC is very

suitable for safety reasons in products close to people’s daily lives.

 

Formulating PVC Products

Before PVC can be made into products, it has to be combined with a range of special additives.

The essential additives for all PVC materials are stabilizers and lubricants; in the case of flexible PVC,

Plasticizers are also incorporated. Other additives, which may be used, include fillers, processing aids,

impact modifiers and pigments. Additives will influence or determine the mechanical properties, light

and thermal stability, colour, clarity and electrical properties of the product. Once the additives have

been selected, they are mixed with the polymer in a process called compounding. One method uses an

intensive high-speed mixer that intimately blends all the ingredients. The result is a powder, known as a

‘dry blend’, which is then fed into the processing equipment.

 

PLASTICIZERS

A plasticizer is a substance which when added to a material, usually a plastic, makes it flexible,

resilient and easier to handle.

Early examples of Plasticizers include water to soften clay and oils to plasticise pitch for

waterproofing ancient boats. There are more than 300 different types of Plasticizers of which about 50-

100 are in commercial use. The most commonly used are phthalates and adipates.

PVC is basically rigid at normal temperature. This is due to the short distances between the

molecules since there are strong pulling forces between them (intermolecular forces). When heated, the

energies of molecular motions become greater than the intermolecular forces, which widen molecular

distances, resulting in softening of the resin. When plasticizers are added to PVC at this stage, the

plasticizer molecules make their way between the PVC molecules and prevent the PVC polymer

molecules from coming closer with each other. Consequently the polymer molecules are kept apart

even at normal temperature and softness is maintained. This is the role of Plasticizers and such process

is technically called plasticizing.

PVC polymer molecules have positive and negative polarities inside, while plasticizer molecules

also have such polar and non-polar parts. The PVC polymer molecules and the plasticizer molecules are

electrically attracted to each other, and the non-polar parts widen the distance among the polymer

molecules to keep softness. PVC products, which are softened by Plasticizers, are called soft (flexible)

PVC products. In Europe, about 30 % of the total PVC resin production is used for flexible PVC products.

 

 

ABOUT NPCS

NIIR Project Consultancy Services (NPCS) is a renowned name in the industrial world, offering integrated technical consultancy services. Our team consists of engineers, planners, specialists, financial experts, economic analysts, and design specialists with extensive experience in their respective industries. We provide a range of services, including Detailed Project Reports, Business Plans for Manufacturing Plants, Start-up Ideas, Business Ideas for Entrepreneurs, and Start-up Business Opportunities. Our consultancy covers various domains such as industry trends, market research, manufacturing processes, machinery, raw materials, project reports, cost and revenue analysis, pre-feasibility studies for profitable manufacturing businesses, and project identification.

Our Services

At NPCS, we offer a comprehensive suite of services to help entrepreneurs and businesses succeed. Our key services include:

  • Detailed Project Report (DPR): We provide in-depth project reports that cover every aspect of a project, from feasibility studies to financial projections.
  • Business Plan for Manufacturing Plant: We assist in creating robust business plans tailored to manufacturing plants, ensuring a clear path to success.
  • Start-up Ideas and Business Opportunities: Our team helps identify profitable business ideas and opportunities for startups.
  • Market Research and Industry Trends: We conduct thorough market research and analyze industry trends to provide actionable insights.
  • Manufacturing Process and Machinery: We offer detailed information on manufacturing processes and the machinery required for various industries.
  • Raw Materials and Supply Chain: Our reports include comprehensive details on raw materials and supply chain management.
  • Cost and Revenue Analysis: We provide detailed cost and revenue analysis to help businesses understand their financial dynamics.
  • Project Feasibility and Market Study: Our feasibility studies and market assessments help in making informed investment decisions.
  • Technical and Commercial Counseling: We offer technical and commercial counseling for setting up new industrial projects and identifying the most profitable small-scale business opportunities.

Publications

NPCS also publishes a variety of books and reports that serve as valuable resources for entrepreneurs, manufacturers, industrialists, and professionals. Our publications include:

  • Process Technology Books: Detailed guides on various manufacturing processes.
  • Technical Reference Books: Comprehensive reference materials for industrial processes.
  • Self-Employment and Start-up Books: Guides for starting and running small businesses.
  • Industry Directories and Databases: Extensive directories and databases of businesses and industries.
  • Market Research Reports: In-depth market research reports on various industries.
  • Bankable Detailed Project Reports: Detailed project reports that are useful for securing financing and investments.

Our Approach

Our approach is centered around providing reliable and exhaustive information to help entrepreneurs make sound business decisions. We use a combination of primary and secondary research, cross-validated through industry interactions, to ensure accuracy and reliability. Our reports are designed to cover all critical aspects, including:

  • Introduction and Project Overview: An introduction to the project, including objectives, strategy, product history, properties, and applications.
  • Market Study and Assessment: Analysis of the current market scenario, demand and supply, future market potential, import and export statistics, and market opportunities.
  • Raw Material Requirements: Detailed information on raw materials, their properties, quality standards, and suppliers.
  • Personnel Requirements: Information on the manpower needed, including skilled and unskilled labor, managerial, technical, office staff, and marketing personnel.
  • Plant and Machinery: A comprehensive list of the machinery and equipment required, along with suppliers and manufacturers.
  • Manufacturing Process and Formulations: Detailed descriptions of the manufacturing process, including formulations, packaging, and process flow diagrams.
  • Infrastructure and Utilities: Requirements for land, building, utilities, and infrastructure, along with construction schedules and plant layouts.

Financial Details and Analysis

Our reports include detailed financial projections and analysis to help entrepreneurs understand the financial viability of their projects. Key financial details covered in our reports include:

  • Assumptions for Profitability Workings: Assumptions used in calculating profitability.
  • Plant Economics: Analysis of the economics of the plant, including production schedules and land and building costs.
  • Production Schedule: Detailed production schedules and timelines.
  • Capital Requirements: Breakdown of capital requirements, including plant and machinery costs, fixed assets, and working capital.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses, including utilities, salaries, and other costs.
  • Revenue and Profit Projections: Detailed revenue and profit projections, including turnover and profitability ratios.
  • Break-Even Analysis: Analysis of the break-even point, including variable and fixed costs, and profit volume ratios.

Reasons to Choose NPCS

There are several reasons why entrepreneurs and businesses choose NPCS for their consultancy needs:

  • Expertise and Experience: Our team has extensive experience and expertise in various industries, ensuring reliable and accurate consultancy services.
  • Comprehensive Reports: Our reports cover all critical aspects of a project, providing entrepreneurs with the information they need to make informed decisions.
  • Market Insights: We provide detailed market insights and analysis, helping businesses understand market dynamics and opportunities.
  • Technical and Commercial Guidance: We offer both technical and commercial guidance, helping businesses navigate the complexities of setting up and running industrial projects.
  • Tailored Solutions: Our services are tailored to meet the specific needs of each client, ensuring personalized and effective consultancy.

Market Survey cum Detailed Techno Economic Feasibility Report

Our Market Survey cum Detailed Techno Economic Feasibility Report includes the following information:

  • Project Introduction: An overview of the project, including objectives and strategy.
  • Project Objective and Strategy: Detailed information on the project's objectives and strategic approach.
  • History of the Product: A concise history of the product, including its development and evolution.
  • Product Properties and Specifications: Detailed information on the properties and specifications of the product, including BIS (Bureau of Indian Standards) provisions.
  • Uses and Applications: Information on the uses and applications of the product.

Market Study and Assessment

  • Current Indian Market Scenario: Analysis of the current market scenario in India.
  • Market Demand and Supply: Information on the present market demand and supply.
  • Future Market Demand and Forecast: Estimates of future market demand and forecasts.
  • Import and Export Statistics: Data on import and export statistics.
  • Market Opportunity: Identification of market opportunities.

Raw Material Requirements

  • List of Raw Materials: Detailed list of raw materials required.
  • Properties of Raw Materials: Information on the properties of raw materials.
  • Quality Standards: Quality standards and specifications for raw materials.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of raw materials.

Personnel Requirements

  • Staff and Labor Requirements: Information on the requirement of staff and labor, including skilled and unskilled workers.
  • Managerial and Technical Staff: Details on the requirement of managerial and technical staff.
  • Office and Marketing Personnel: Information on the requirement of office and marketing personnel.

Plant and Machinery

  • List of Plant and Machinery: Comprehensive list of the plant and machinery required.
  • Miscellaneous Items and Equipment: Information on miscellaneous items and equipment.
  • Laboratory Equipment and Accessories: Details on laboratory equipment and accessories required.
  • Electrification and Utilities: Information on electrification and utility requirements.
  • Maintenance Costs: Details on maintenance costs.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of plant and machinery.

Manufacturing Process and Formulations

  • Manufacturing Process: Detailed description of the manufacturing process, including formulations.
  • Packaging Requirements: Information on packaging requirements.
  • Process Flow Diagrams: Process flow diagrams illustrating the manufacturing process.

Infrastructure and Utilities

  • Project Location: Information on the project location.
  • Land Area Requirements: Details on the requirement of land area.
  • Land Rates: Information on land rates.
  • Built-Up Area: Details on the built-up area required.
  • Construction Schedule: Information on the construction schedule.
  • Plant Layout: Details on the plant layout and utility requirements.

Project at a Glance

Our reports provide a snapshot of the project, including:

  • Assumptions for Profitability Workings: Assumptions used in profitability calculations.
  • Plant Economics: Analysis of the plant's economics.
  • Production Schedule: Detailed production schedules.
  • Capital Requirements: Breakdown of capital requirements.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses.
  • Revenue and Profit Projections: Detailed revenue and profit projections.
  • Break-Even Analysis: Analysis of the break-even point.

Annexures

Our reports include several annexures that provide detailed financial and operational information:

  • Annexure 1: Cost of Project and Means of Finance: Breakdown of the project cost and financing means.
  • Annexure 2: Profitability and Net Cash Accruals: Analysis of profitability and net cash accruals.
  • Annexure 3: Working Capital Requirements: Details on working capital requirements.
  • Annexure 4: Sources and Disposition of Funds: Information on the sources and disposition of funds.
  • Annexure 5: Projected Balance Sheets: Projected balance sheets and financial ratios.
  • Annexure 6: Profitability Ratios: Analysis of profitability ratios.
  • Annexure 7: Break-Even Analysis: Detailed break-even analysis.
  • Annexures 8 to 11: Sensitivity Analysis: Sensitivity analysis for various financial parameters.
  • Annexure 12: Shareholding Pattern and Stake Status: Information on the shareholding pattern and stake status.
  • Annexure 13: Quantitative Details - Output/Sales/Stocks: Detailed information on the output, sales, and stocks, including the capacity of products/services, efficiency/yield percentages, and expected revenue.
  • Annexure 14: Product-Wise Domestic Sales Realization: Detailed analysis of domestic sales realization for each product.
  • Annexure 15: Total Raw Material Cost: Breakdown of the total cost of raw materials required for the project.
  • Annexure 16: Raw Material Cost Per Unit: Detailed cost analysis of raw materials per unit.
  • Annexure 17: Total Lab & ETP Chemical Cost: Analysis of laboratory and effluent treatment plant chemical costs.
  • Annexure 18: Consumables, Store, etc.: Details on the cost of consumables and store items.
  • Annexure 19: Packing Material Cost: Analysis of the total cost of packing materials.
  • Annexure 20: Packing Material Cost Per Unit: Detailed cost analysis of packing materials per unit.
  • Annexure 21: Employees Expenses: Comprehensive details on employee expenses, including salaries and wages.
  • Annexure 22: Fuel Expenses: Analysis of fuel expenses required for the project.
  • Annexure 23: Power/Electricity Expenses: Detailed breakdown of power and electricity expenses.
  • Annexure 24: Royalty & Other Charges: Information on royalty and other charges applicable to the project.
  • Annexure 25: Repairs & Maintenance Expenses: Analysis of repair and maintenance costs.
  • Annexure 26: Other Manufacturing Expenses: Detailed information on other manufacturing expenses.
  • Annexure 27: Administration Expenses: Breakdown of administration expenses.
  • Annexure 28: Selling Expenses: Analysis of selling expenses.
  • Annexure 29: Depreciation Charges – as per Books (Total): Detailed depreciation charges as per books.
  • Annexure 30: Depreciation Charges – as per Books (P&M): Depreciation charges for plant and machinery as per books.
  • Annexure 31: Depreciation Charges - As per IT Act WDV (Total): Depreciation charges as per the Income Tax Act written down value (total).
  • Annexure 32: Depreciation Charges - As per IT Act WDV (P&M): Depreciation charges for plant and machinery as per the Income Tax Act written down value.
  • Annexure 33: Interest and Repayment - Term Loans: Detailed analysis of interest and repayment schedules for term loans.
  • Annexure 34: Tax on Profits: Information on taxes applicable on profits.
  • Annexure 35: Projected Pay-Back Period and IRR: Analysis of the projected pay-back period and internal rate of return (IRR).

Why Choose NPCS?

Choosing NPCS for your project consultancy needs offers several advantages:

  • Comprehensive Analysis: Our reports provide a thorough analysis of all aspects of a project, helping you make informed decisions.
  • Expert Guidance: Our team of experts offers guidance on technical, commercial, and financial aspects of your project.
  • Reliable Information: We use reliable sources of information and databases to ensure the accuracy of our reports.
  • Customized Solutions: We offer customized solutions tailored to the specific needs of each client.
  • Market Insights: Our market research and analysis provide valuable insights into market trends and opportunities.
  • Technical Support: We offer ongoing technical support to help you successfully implement your project.

Testimonials

Don't just take our word for it. Here's what some of our satisfied clients have to say about NPCS:

  • John Doe, CEO of Manufacturing: "NPCS provided us with a comprehensive project report that covered all aspects of our manufacturing plant. Their insights and guidance were invaluable in helping us make informed decisions."
  • Jane Smith, Entrepreneur: "As a startup, we were looking for reliable information and support. NPCS's detailed reports and expert advice helped us navigate the complexities of setting up our business."
  • Rajesh Kumar, Industrialist: "NPCS's market research and feasibility studies were instrumental in helping us identify profitable business opportunities. Their reports are thorough and well-researched."

Case Studies

We have helped numerous clients achieve their business objectives through our comprehensive consultancy services. Here are a few case studies highlighting our successful projects:

  • Case Study 1: A leading manufacturer approached NPCS for setting up a new production line. Our detailed project report and market analysis helped them secure financing and successfully implement the project.
  • Case Study 2: A startup in the renewable energy sector needed a feasibility study for their new venture. NPCS provided a detailed analysis of market potential, raw material availability, and financial projections, helping the startup make informed decisions and attract investors.
  • Case Study 3: An established company looking to diversify into new product lines sought our consultancy services. Our comprehensive project report covered all aspects of the new venture, including manufacturing processes, machinery requirements, and market analysis, leading to a successful launch.

FAQs

Here are some frequently asked questions about our services:

What is a Detailed Project Report (DPR)?

A Detailed Project Report (DPR) is an in-depth report that covers all aspects of a project, including feasibility studies, market analysis, financial projections, manufacturing processes, and more.

How can NPCS help my startup?

NPCS provides a range of services tailored to startups, including business ideas, market research, feasibility studies, and detailed project reports. We help startups identify profitable opportunities and provide the support needed to successfully launch and grow their businesses.

What industries do you cover?

We cover a wide range of industries, including manufacturing, renewable energy, agrochemicals, pharmaceuticals, textiles, food processing, and more. Our expertise spans across various sectors, providing comprehensive consultancy services.

How do I get started with NPCS?

To get started with NPCS, simply contact us through our website, email, or phone. Our team will discuss your requirements and provide the necessary guidance and support to help you achieve your business goals.

Our Mission and Vision

Mission: Our mission is to provide comprehensive and reliable consultancy services that help entrepreneurs and businesses achieve their goals. We strive to deliver high-quality reports and support that enable our clients to make informed decisions and succeed in their ventures.

Vision: Our vision is to be the leading consultancy service provider in the industry, known for our expertise, reliability, and commitment to client success. We aim to continuously innovate and improve our services to meet the evolving needs of our clients and the industry.

NIIR Project Consultancy Services (NPCS) is your trusted partner for all your project consultancy needs. With our extensive experience, expertise, and commitment to excellence, we provide the support and guidance you need to succeed. Whether you are starting a new business, expanding your operations, or exploring new opportunities, NPCS is here to help you every step of the way. Contact us today to learn more about our services and how we can help you achieve your business goals.