Modern Technology of Synthetic Resins & Their Applications (2nd Revised Edition) ( ) ( Best Seller ) ( ) ( ) ( )
Author NIIR Board of Consultants & Engineers ISBN 9788178330921
Code ENI71 Format Paperback
Price: Rs 1575   1575 US$ 43   43
Pages: 592 Published 2018
Publisher Asia Pacific Business Press Inc.
Usually Ships within 5 days

Modern Technology of Synthetic Resins & Their Applications
(Acetal, Acrylonitrile, Alkyd, Amino, Casein, Cashewnut Shell Liquid, Epoxy, Phenolic, Polyamide, Polyurethane, Rubber, Silicon, Polyvinyl Acetate, Shellac, Sucrose, Terpene Resins)
(2nd Revised Edition)

Synthetic resin is typically manufactured using a chemical polymerization process. This process then results in the creation of polymers that are more stable and homogeneous than naturally occurring resin. Since they are more stable and are cheaper, various forms of synthetic resin are used in a variety of products such as plastics, paints, varnishes, and textiles. There are various kinds of synthetic resins; acetal resins, amino resins, casein resins, epoxy resins, hydrocarbon resins, polyamide resins, etc. The classic variety is epoxy resin, manufactured through polymerization, used as a thermoset polymer for adhesives and composites. Epoxy resin is two times stronger than concrete, seamless and waterproof. Polyamide resin is another example of synthetic resins. Polyamide resins are products of polymerization of an amino acid or the condensation of a diamine with a dicarboxylic acid. They are used for fibers, bristles, bearings, gears, molded objects, coatings, and adhesives. The term nylon formerly referred specifically to synthetic polyamides as a class. Because of many applications in mechanical engineering, nylons are considered engineering plastics. Resins are valued for their chemical properties and associated uses, such as the production of varnishes, adhesives, lacquers, paints, rubber and pharmaceutical uses. The applications of synthetic resins are seen in some important industries like paint industry, adhesive industry, the printing ink industry, the textile industry, the leather industry, the floor polish, paper, agricultural industry etc. As it can be seen that there is an enormous scope of application of resins hence it is one of the major field to venture. 

Synthetic Resins are materials with properties similar to natural plant resins. They are viscous liquids capable of hardening permanently. Chemically they are very different from resinous compounds secreted by plants. Synthetic resins are of several classes.

The growth of the synthetic resins market can be attributed to the high demand from the packaging sector due to favorable properties, including lightweight and ability to act as an excellent barrier, which allows for their usage in applications such as barrier packaging, shrink wraps, and pharmaceutical packaging.

The major contents of the book are properties, manufacturing process, formulae of synthetic resins and applications of synthetic resins, derivatives of resins, use of resins in polymer field, alkyd resin technology, epoxy resins, manufacture of polystyrene based ion-exchange, phenol formaldehyde reactions, polycarbonates resins, polyester coating compositions, synthetic rubbers, modification with synthetic resins, water-soluble polymers, cross-linking of water-soluble coatings etc. This book also contains the list of manufacturers and dealers of raw materials, list of Chemical Plant, Photographs of Machinery with Suppliers Contact Details, Sample Plant Layout and Process Flow Chart.

The book will be very useful for new entrepreneurs, manufacturers of synthetic resins who can easily extract the relevant formulation and manufacturing process from the book. 

1.     Acetal Resins                                                                  

        Properties of Formaldehyde and Trioxane

        Preparation of Polymers

        New Polymers of Formaldehyde

        Polymerization of Trioxane

        Higher Aldehydes

        Other Aldehydes

        Properties of Aldehyde Polymers

        Polymers of Other Aldehydes

        Processing of Formaldehyde Polymers

        Uses of Polymers of Formaldehyde

 

2.     Acrylic solution resins                                                  

        Terminology

        Backbone Monomers

        Thermoplastic Acrylics

        Thermosetting Acrylics

        Processing Industries

        Aqueous Solution Acrylics

        Non-Aqueous Dispersions (NAD)

        Machinery & Equipments

 

3.     Acrylonitrile Resins                                                        

        Manufacture of Acrylonitrile

        From Acetylene

        Acrylonitrile : styrene Copolymers

        Acrylonitrile : butadiene-styrene

        Uses and Economic Aspects

 

4.     Alkyd Resin Technology                                                  

        The Nature of Alkyd Resins

        Raw Materials

        Modifiers for Alkyd Resins

        Formulation of Alkyd Resins

        Formula Development

        Calculation of Alkyd Formulations

        Typical Formulations

        Manufacture of Alkyd Resins

        Alcoholysis

        Acidolysis

        Fatty Acid Process

        Estrification

        Raw Materials Handling

        Alkyd Manufacturing Plant

        Corrective Measures During Processing

        Applications of Alkyd Resins

 

5.     AMINO RESINS                                                                   

        Formation of Amino Resins

        Urea Formaldehyde Resins

        Melamine Formaldehyde Resins

        Other Amino Resins

        Production of Amino Resins

        Uses of Amino Resins

        Machinery And Equipments

        Economics of the Melamine-Formaldehyde

        Resin/Urea-formaldehyde resin

 

6.     Bhilawan Nut Shell Liquid Resins

                                   

7.     Casein Resins                                                                   

        Manufacture

        Properties

        Casein Adhesves for Bonding Paper

        Casein Adhesive for a Binding Dissimilar Materials

        Lime-Free Glue Formulations

        Methods of Application

 

8.     Cashewnut Shell Liquid Resins                                        

        Chemistry of Cashew nut shell Liquid

        Utilisation of Cashewnut Shell Liquid

        Chemically Modified Cardanol Polymer

 

9.     Epoxy Resins                                                                    

        Introduction

        Epoxy Resin Manufacture and Characterization

        Curing Agents For Epoxy Resins

        Principles in Formulating with Epoxy Resins

        Solventless coating for application by heated two

        componentair less spray equipment

        Water Dispersible Epoxy Coatings

        Epoxy Baking Enamels

        Water-Dispersible Epoxy Resin Coatings

        for Electrodeposition

        Epoxy Aqueuos powder Suspensions (APS)

 

10.   Furan Resins

                                                                    

11.   Hydrocarbon Resins                                                        

        Petroleum Resins

        Terpene Resins

        Resins from Pure Monomers

 

12.   Ion-Exchange Resins                                                        

        Theory and Mechanism

        Types of Ion-Exchange Resins

        Types of Ion-Exchange Resins

        Properties

        Applications

        Manufacture

        Manufacture of Polystyrene Based Ion-Exchange

        Resins Polymerisation

        Alternative Method of Synthesis of anIon-Exchange Resin

        Process of Manufacture

        Methods of Analysis

        Determination of Physcial Properties:

        Chemical Properties

 

13.   Indene-Coumarone Resins                                               

        Raw Material and Source

        Method of Preparation

        Mechanism of Polymerization

        Physical Chemical Properties and Type

        Hydrogenated Resins

        Applications

        Application in Adhesives

        Coumarone-indene Resin Adhesives

        Health and Hygiene Factors

        Test Methods

        Economics for Coumarone-indene Resin Plant

 

14.   Phenolic Resins                                                                

        Raw Materials

        Phenol Formaldehyde Reactions

        Catalysts

        Modified Phenolic Resins

        Baking Phenolics

        Dispersion Resins

        Novolak Resins

        Resols

        Fillers for Phenolic Moulding Powders

        Thermal  degradation

        Modified and Thermal - Resistance Resins

        Oil Soluble Phenolic Resin

        Heat and Sound Insulation Materials

        Foundry Resins

 

15.   Bisphenol-Furfural Resin 

                                                

16.   Para-toluene sulfonamide resins      

                             

17.   Polycarbonates Resins                                                    

        Properties

        Methods of Manufacture


18.   Polyamide Resins                                                             

        Properties

        Methods of Manufacture

 

19.   Polymide Resins                                                               

        Polymide Adhesives

        Adhesive and Bonding Technology

 

20.   Polyurethane Resins                                                        

        Raw Materials

        Hazards of Isocyanates

        Classification of Polyurethanes

 

21.   Polyvinyl Alcohol Resins                                               

        Introduction

        Chemical Nature

        Physical Properties

        Modifiers

        Commercial uses : Compounding and Formulating

        Commercial uses : Processing Aids

        Formulations

        Preparation Process

        Adhesives

        Economics for Polyvinyl alcohol

 

22.   Polyvinyl Acetate solid Resins                                       

        Manufacture

        Vinyl Acetate Copolymers

        Polyvinyl Acetate Emulsions

        Manufacture

        Laboratory Preparation of Polyvinyl Acetate

        Commercial Preparation

        Special Formulation Acetate Adhesive

        As Adhesives In the Building Industry

        Economics for Polyvinyl acetate

 

23.   Rubber Resins                                                                   

        Introduction

        Natural Rubber

        Synthetic Rubbers

        Chlorinated Rubber Resins

        Cyclized Rubber Resins

        Application And Formulations

        High Styrene-Butadiene Rubber Resins

        Styrene-Butadiene Rubber Adhesives

        Chlorinated Biphenyls

        Chlorinated Paraffins

        Synthetic Rubber Resin Latexes

        Nitrile rubber Adhesives

        Butyl Rubber And Polysobutylene Adhesives

        Processing for Butyl Polymers

        Carboxylic Resin Polymers in Adhesives

        Carboxylic elastoners in PSA

        Carboxylic Functional Neoprenes as Contace Adhesives

 

24.   Silicone Resins                                                                 

        Preparation of Silocones

        Silicone Resins

        Preparation and Formulation of Silicone-Resin

        based Coatings

        Application Guides

        Other Silicone Resin Application

        Other Silicones for Surface Coatings

 

25.   Shellac Resins                                                                 

        Commercial Forms of Lac

        Chemical Composition

        Modification with Synthetic Resins

 

26.   Sucrose Resins                                                                 

        Transesterification

        Sucrose modified resins

        Sucrose acetate isobutyrate (SAIB)

 

27.   Rosin & Rosin Derivatives                                               

        Composition, Reaction and Derivatives, Isomerization

        Maleation

        Oxidation, Photosensitized Oxidation

        Hydrogenation

        Hydrogenless Hydrogenation

        Hydrocaraking of Rosin

        Phenolic Modification

        Salt Formation

        Hydrogenolysis

        Polyesterification

        Preparations, Typical Uses

        Chemical and Physical Properties of Amine D Acetate

        Decarboxylation

        Hydroxymethylation and Hydroxylation

        Poly-Oxyalkylation

        Oxonation

 

28.   Terpene Resins                                                                  

        Hot Melt Adhesives (HMA) and coatings

        Terpene-phenolic Resin (TPR)

 

29.   Water-soluble polymers                                                 

        Classification

        Applications of Starches

        The textile industry

        Adhesive Applications

        Liquid Adhesives

        Miscellaneous Uses

        Properties of Cellulose Ethers

        Emulsion Polymerization


30.   Alkyl and Hydroxyalkyl cellulose          

        Cellulosic Ethers, General Information

        Manufacture

        Powder and Film properties

        Physical and chemiclal properties

        Commercial Uses : Compounding and Formulating

        Commercial Uses

 

31.   Water-Reducible Resins                                                   

        Water Soluble Polymers

        Cross-Linking of Water-Soluble Coatings

        Additives For Coatings, Pigments

        Formulation of water-soluble coatings

        Trouble Shooting with water-soluble polymers

 

32.  Photographs of Machinery with Suppliers
      Contact Details                                              

        Reactor

        Condenser

        Thermic Fluid Heating System

        Octagonal Blender

        Industrial Storage Vessels

        Ribbon Blender

        Filter Press

        Filter Tank

        Moulding Machine

        Ball Mill

        Blender

        Dryer

        Roller Mill

        Conveyor Dryer

        Resin Plant

        Blender Machine

        Air Compressor

        Heat Exchanger

        Storage Tank

 

33.  Sample Plant Layout and Process Flow Chart   

        Alkyd Resin Manufacturing

        Resin Production Equipment

        Process Flow Chart for Toner Resins

        Polyester Resin Production

Factory Layout for production of Alkyd Resin Production Plant

 

 

 

EPOXY RESINS

INTRODUCTION

In the plastics industry epoxy resins are classified as thermosetting resins, and they are used in the paint industry as convertible coatings. Epoxy resins are cured and converted to a thermoset state by chemical reaction between the resin and a curing agent. Depending on the curing agent this reaction can take place; either at elevated or at room temperatures. The cured resins are not soluble in solvents and cannot be melted by heating. This property is in direct contrast to thermoplastic products, such PVC, or polystyrene or non-convertible coatings, such as chlorinated rubber, acrylic or nitrocellulose lacquers which remain soluble in solvents and can be remelted by heating.

Epoxy resins became commerecially available in Australia in the early 1950s and since that time have become firmly established in many industries. Most commonly used types are based on epichlorhydrin and diphenylol propane and are available in range of molecular weights. The low molecular weight resins are liquid and the high molecular weight resins are solid.

What are the main properties of the epoxy-resin-based systems that influence the choice of epoxy resins from a wide range of plastics available at present? The important properties are listed below.

  1. The chemical structure of epoxy resins gives them high chemical resistance against a wide range of severe corrosive conditions. These properties are derived from the aromatic nature of the backbone and good chemical stability of the phenolic ether linkage.
  2. Epoxy resins have good adhesion to a wide range of materials, including metals, wood, concrete, glass, ceramic and many plastics. This is due to the presence of polar groups in the cured resin.
  3. Low shrinkage during curing results in good dimensional accuracy in construction of structural items and enables manufacture of high strength adhesives with a glue line of low residual stress.
  4. Ease of fabrication means that complicated shapes can be reproduced easily using liquid epoxy resins systems which can be cured at room temperatures.
  5. Good physical properties such as toughness, flexibility and abrasion resistance can be obtained.
  6. Although there are temperature limitations, epoxy resins are generally superior to almost all thermoplastics in elevated temperature performance.

One of the main users of epoxy resins is the paint industry, which produces special types of surface coatings which will be discussed in further detail below. The electrical industry was one of the first industries where epoxy resins became established during the early stages of commercial production. Epoxy resins are convenient to use in solvent-free liquid form which sets into a hard infusible solid after the addition of curing agent. They are used extensively, for example for potting, embedding or encapsulation of electrical components, for cable joining to make water proof joints, for manufacture of Telecom terminal pillars.

Another industry to recognize the value of liquid epoxy resins was the engineering industry. Low shrinkage and good dimensional stability in service are important properties utilized for manufacture of foundry patterns, vacuum forming moulds, press tools for prototype or short runs, drilling jigs, and checking fixtures. Adhesives are used in many applications in place of soldering, bolts or rivets, particularly in small parts assembly and in aircraft construction. Fibreglass reinforced plastics are manufactured from epoxy resins for applications where chemical resistance and good physical strength properties are the main requirements, for example piping and storage vessels in the chemical industry. In the civil engineering industry the use of epoxy resins has also become established as a standard practice. The rapid cure of epoxy adhesives as compared with cement and good adhesion to new and old concrete enables more rapid construction and repair of concrete structures.

EPOXY RESIN MANUFACTURE AND CHARACTERIZATION

By far the most important class of epoxy resins used at present on a large scale commercially is that based upon the reaction between diphenylol propane and epichlorhydrin in the presence of alkali. The basic reactions are shown below.

 

The basic reaction is formation under alkaline conditions of a chlorhydrin ether of DPP (b) followed by dehydrochlorination of the chlorhydrin group by alkali to form an epoxy group, thus giving the diglycidyl ether of DPP (c). An excess of ECH will favour a high proportion of the simple diglycidyl ether of DPP; higher DPP ratios will give higher molecular weight polymers. Commercial grades of resin can be represented by the following formula:

The pure diglycidyl ether of DPP with n=0 is a crystalline solid. The commercial low viscoity liquid resins are rich in this compound and the average n is approximately 0.2. Viscosity can be further reduced by addition of monoepoxide compounds such as aliphatic glycidyl ethers. In low melting point solid resins average n is approximately 2. The common commercial high molecular weight resins have average n up to 13. There are also very high molecular weight resins with molecular weights up to 200 000. These resins have mainly hydroxy groups and practically no epoxy groups and are used as thermoplastic resins for non-convertible coatings.

The commercial epoxy resins are characterized by specifying their main properties, as in sections 2.1 to 2.3.

Epoxide Group Content (EGC)

This is at present expressed as millimoles of epoxide groups per 1 kg of resin (m mol/kg). Previously this was expressed as Epoxy Molar Mass (EMM) in which case the unit is grams per mole of epoxide (g/mol). Conversion to EGC from EMM can be done by the following formula:

Hydroxyl Content

This is expressed as millimoles of hydroxyl groups per 1 kg of resin (m mol/kg). For esterification purposes, one epoxy group is equal to two hydroxyl groups and this must be taken into account when calculating esterification equivalents.

Viscosity

Commonly used metric viscosity unit is the Pascal second (Pa s), which has replaced the Poise unit (1 Poise = 0.1 Pa s).

Viscosity is normally measured at 250C on liquid low viscosity resins without dilution. A 70 per cent solution is used for high viscosity liquid resins and a 40 per cent solution is commonly used for solid resins in solvents such as glycol ethers. Properties of a typical range of epoxy resins are shown in table 1.

Selection of the resin grade depends on the application. Low molecular weight resins are rich in epoxy groups and are used for applications where the cross-linking reaction is through epoxy groups. In high molecular weight resins, hydroxy groups are predominant, and reactions involving both hydroxy and epoxy groups are selected for further polymerization and cross-linking.

CURING AGENTS FOR EPOXY RESINS

The reaction for cross-linking epoxies resins can be between epoxy resin molecules with the aid of a catalyst. However, a majority of uses of epoxy resins employ a reactive hardener (such as amines, acid anhydrides, phenolic resins) which combines with epoxy or hydroxy groups in the resin, to form a thermoset product.

Table 1 : Properties of a typical range of epoxy resins

Typical viscosity range pa. s

 Resin GradeApp. nApp. EMM g/molApp. EGC m mol /kg.Solids % Mass
1. Low viscosity liquid resins modified with monoepoxide diluents 0.2 200 5000 0.6-1.8 100
2. Low viscosity basic resins 0.2 200 5000 0.8-16.0 100
3. High viscosity resins 0.5 250 4000 0.4-1.0 70
4. Solid resins:          
  Durrans Melting point approx. 700C 2 500 2000 0.1-0.2 40
  Durrans Melting point approx. 1000C 4 900 1100 0.5-1.0 40
  Durrans Melting point approx. 1300C 9 1700 600 2.0-3.5 40
  Durrans Melting point approx.1500C 13 2700 370 4.0-12.0 40

The most commonly used curing agents for room temperature cured systems are polyfunctional amines and polymide resins. As shown below the active hydrogen atoms of primary and secondary amine groups react with epoxy groups.

A primary monoamine has a functionality of 2 for epoxy reactions, whilst the epoxy group has a functionality of 1. Thus a diepoxide reacted with a monoamine would give a linear polymer. Consequently, the useful curing agents are polyamines, such as:

  Functionality Molar Mass
Ethylene diamine (EDA) 4 60
Diethylene triamine (DET) 5 103
Trietylene tetramine (TETA) 6 146

The reaction mechanism suggests that the curing agent should be used in stoichiometric proportions. For example resin having an EMM of 190 the amount of DET would be:

This is normally expressed as parts by mass of curing agent for 100 grams of resin (phr), that is 11 phr of DET. The use of incorrect proportions can lead to water sensitivity and poor physical properties if an excessive amount of amine is used. Quite small excess amine will adversely affect the water sensitivity. Low curing agent content would result in poor solvent-resistant and poor physical properties. With solvent-free systems this can be conveniently checked by determining Deflection Temperature (DT), that is, the temperature at which a standard sample begins to distort under load when determined by a standard method. The optimum curing agent ratio will show a peak in the DT curve plotted from a range of determinations using different curing agent proportions.

In practice, the use of free low molecular weight aliphatic amines is undesirable because of problems caused by objectionable volatility of such amines from an industrial hygiene point of view. This volatility can be eliminated by prereacting the amine with part of the epoxy resin forming a so-called amine adduct. Amine adducts are usually prepared by mixing one molecule of epoxy resin with two molecules of polymine.

Using solid epoxy resins, so-called 'isolated adducts' are prepared by reacting in solution and then distilling the excess amine and solvent. Isolated adduct is a solid, usually marketed in powder form. If solvent and the excess amine are not removed, the amine adduct is described as an 'in situ adduct'. The main advantages of adducts compared with straight amines are :

  1. reduced volatility,
  2. reduced toxicity,
  3. reduced blushing tendency during cure of films, and
  4. smaller mixing ratio with resins reduces chances of error.

Cycloaliphatic amines form another group of curing agents that are less volatile than linear aliphatic amines. They are slower in curing and require additions of accelerators, or must be cured at elevated temperture.

Another method for eliminating the problems associated with the use of free amines is the use of polyamide resins. These are produced from dimeric fatty acids and amine, and are available in several grades of different molecular weights. Polyamide resins react with epoxy resins through amine groups present in the resin. Because they have higher molecular weight than straight amines, their mixing proportions are much higher. The mixing ratio can be varied within comparatively wide limits depending on the properties desired in the end product. Higher proportions of polyamide resin give increased flexibility; a lower ratio imparts best water resistance, but caution should be exercised in adjusting the proportions to ensure that achievement in one desired property does not make too much sacrifice in another requirement. The main advantages and disadvantages of polyamide resins compared with amine or amine adduct systems are :

  1. volatility: non-volatile,
  2. mixing ratio with eposy resin: lower with polyamide resin,
  3. pot life: longer with polyamide resin,
  4. flexibility: lower with polyamide resin,
  5. hardness: lower with polyamide resin,
  6. water resistance: higher with polyamide resin, and
  7. chemical resistance: lower with polyamide resin.

Ketimines are used as curing agents for applications where longer pot life is required. Ketimines are described as latent curing agents, as they do not react with epoxy resins until free amine is released by contact with moisture in the air during and after application. The film thickness of these systems should not exceed 250 um to allow moisture penetration during curing.

One disadvantage with the curing agents described above is that the rate of reaction becomes too slow at lower temperatures. Below 150C ambient temperature, adequate cure is not obtained with most of the conventional curing agnets. However, several special curing agents are now available which cure at much lower temperatures. Some of these are based on aromatic amines such as 4, 4-diaminodiphenyl methane (DDM) containing modifiers and accelerators. These curing agents when mixed with liquid epoxy resins can be cured at 50 C and even below :

PRINCIPLES IN FORMULATING WITH EPOXY RESINS

Two-pack Systems

Two-pack epoxy systems consist of a number of components which are selected to achieve desirable properties in the end product. A brief description of the components that may be used is given below.

Epoxy resins. Low molecular weight solid resins are used in solvent-based paints. Liquid resins are used in solventless systems.

Curing agents

  1. Amine and amine adduct-for best chemical resistance.
  2. Polyamide- for best flexibility and water resistance.
  3. Ketimines-for longer pot life in high solids systems.
  4. Modified aromatic amines-for low temperature cure.

Accelerators. Accelerators are often used in polymide cured solventless systems. Phenols, tertiary amines and triphenyl phosphate are typical accelerators.

Flexibilizers. Flexibilizers are often used with epoxy resins to increase flexibility and impact resistance. Typical products are polyamide and polysulfide resins. As mentioned previously, polyamides act also as curing agents. Other flexibilizers include ester plasticizers, epoxidised oils, and coal tar.

Reactive diluents. Monoepoxide diluents, such as n-butyl glycidyl ether, can be used in small proportions to reduce the viscosity of liquid epoxy resins in order to improve handling properties. As these diluents are of low molecular weight and are mono-fuctional, they reduce the physical strength and chemical resistance of the cured systems.

Pigments and fillers. Epoxy surface coatings use conventional pigments and extenders provided they meet chemical resistance requirements. Epoxy-resin-based adhesives and flooring compounds often use coarser fillers such as sand.

Thixotropic additives. Conventional types of thixotropic additives are used in epoxy systems and include synthetic silica (Aerosil*, Santocel'*), hydrogenated castor oil derivatives (Thixcin*) and Bentones.*

Solvents. Solubility of resins varies with their molecular weight. Liquid resins are soluble in hydrocarbons whilst solid resins are soluble in mixtures of aromatic hydrocarbons with alcohols, ketones and glycol ethers.

Two-pack epoxy systmes can be broadly classified into five groups, 1 to 5.

Solvent-based coatings

These systems are based on a solid epoxy resin solution, either clear or pigmented to give a desired colour. The resin is cured by addition of an amine adduct or polyamide.

Two-pack solvent-based paints have a long pot life (at least 6 hours) and can be applied by conventional methods, such as brushing or spraying. The normal paint film thickness per coat is about 50 pm. They have excellent adhesion to steel, concrete, asbestors cement and most other surfaces. They are tough and resistant to a wide range of chemicals and solvents. The chemical resistance of amine-adduct-cured systems is superior to the polyamide-cured formulations. Polyamide curing agents give a longer pot life, great flexibility, and superior water resistance. The choice between these two curing agents depends on the end use requirements.

Solventless and High Solids Coatings

High labour costs in applying the solvent-based paints to obtain high film thickness led to the development of solvent-free systems. Fox instance, it would be necessary to apply five to eight coats of conventional solvent based paint to obtain a minimum 250 to 375 pm film thickness required for good durability under immersion conditions. The use of solvent-free systems reduces labour cost, eliminates solvent hazards and simplifies ventilation problems in confined spaces.

Liquid epoxy resins are used in the manufacture of these coatings together with special types of low viscosity curing agents. The early problems of extremely short pot life of solvent-free systems have been overcome by development of latent curing agents or new specialized equipment for paint application.

Latent curing agents are based on ketimines. With this type of coating it is possible to apply by brush or spray up to 250pm film thickness in a single coat on vertical surfaces without sagging. Although these coatings are often described as solventless, they contain small amounts of solvents, and should be more accurately described as high solids coatings. They usually contain over 90 per cent of film forming material.

Another method of overcoming application difficulties with solvent-free systems and to obtain better results is by using specialized equipment. Two-pack heated airless spray rigs (capable of accurately metering the components and of controlling their temperature at suitable levels) are now available. The temperature drop immediately after application of preheated paint gives a setting-up effect similar to that obtained by solvent loss with conventional paints. Solventless paints applied by other methods usually remain liquid for 2 to 4 hours until gelation takes place.

The chemical resistancce and corrosion resistance of solventless coatings is very similar to that of the two pack solvent based paints. They are, however, less flexible and show a more pronounced tendency to yellow and lose gloss on exterior exposure. Some of the solvent-free types are only available in darker shades because of the colour of the modified aromatic amine used to obtain good cure at low temperatures.

Tar Epoxy Coatings

Two-pack epoxy paints can be modified with suitable grades of tar to produce tar epoxy coatings. The addition of a comparatively low cost tar to an epoxy resin system improves water resistance, but some loss in chemical and solvent resistance occurs. The colour of tar epoxy paints is generally black; tars of very light colour have also become available to enable formulation of paints in a fairly wide range of colours for special applications where black is not acceptable.

The tar epoxy paints are formulated in the same manner as the unmodified two-pack epoxy paints and are available as conventional solvent-based systems or in high solids or solventless types. They can be applied by brushing, roller coating, or spraying, and they are particularly suitable for airless spray. The film thickness per coat can range from 50 to 375 pm, depending on the type of formulation.

Flooring Compounds

Concrete floors are often a cause of concern in industrial plants as conventional coatings are not always resistant to heavy wear or damage through the spillage of corrosive materials. For this applications, solventless liquid epoxy resin blends with a suitable aggregate can be used at a film thickness ranging from 3 to 6 mm applied in one operation. These compounds may be used in the construction of new floors or in resurfacing of old ones, and they may be laid on concrete, metal or wood substrates.

Several types of flooring compounds are available. One type consists of a compound heavily filled with sand or other aggregate, and it is applied by trowelling. Another method of application uses low viscosity compositions, which are poured directly onto the substrate and smoothed out to form a continuous level coating. Additional aggregate is then spread on the surface before the coating has set and is trowelled into the film to give a non-skid surface. A decorative appearance can be obtained by the use of conventional pigments. This type of flooring is used in chemical plants, dairies, breweries and other industries where a combination of chemical resistance, hard wearing surface, and skid resistant properties is required.

Fibreglass Laminates

Fibreglass-reinforced epoxies have outstanding physical properties and are well established in electrical applications and in aircraft and rocket construction. In corrosion protection, epoxy laminates for cladding and structural uses are normally based on room temperature cured systems manufactured by hand lay-up techniques. In the production of chemically resistant piping and tank construction, filament winding techniques have been established and are extensively used overseas.

Cladding with fibreglass-reinforced epoxies gives a chemically resistant coating that can be built up to higher film thickness than conventional coatings with superior physical strength properties, particularly in resistance to impact. It is a most satisfactory method for the lining and repair of concrete and steel tanks, and for wrapping pipes for protection and repair of leaks, without necessitating a shutdown.

Examples of Formulations (parts by mass)

SOLVENT BASED PAINT (9.4.1.1.)

Resin base :  
Epikote* 1001 X 75 43.0
Flow control agent 2.3
Rutile titanium dioxide 33.4
Solvent blend 21.3
  100.0

0

Hardener amine adduct:  
E.D.A. 1.5
n-butanol 6.0
Xylene 6.0
Epikote* 1001 X 75a 11.5
  25.
Slovent blend:  
MEK 25
MIBK 25
Oxitol* 15
Toluene 35
  100

HIGH SOLIDS COATING (12.4.1.2)

Resin base :  
Epikote*215a 100.0
Rutile titanium dioxide 23.0
Barytes 24.0
Diatomaceous earth 9.0
Thickening agent 1.8
Cresylic acid solution 6.0
50 per cent in alcohol  
Hardener:  
Ketimine Curing Agent 45

SOLVENTLESS TAX EPOXY COATING (12.4.1.3.)

Tar base:  
Liquid tar 33.0
Polymid 75b 14.3
Accelerator DMP30 1.4
Thickening agent 2.4
Talc TX 22.4
Resin base:  
Epikote 816a 26.5

SOLVENTLESS COATING FOR APPLICATION BY HEATED TWO COMPONENTAIR LESS SPRAY EQUIPMENT

Resin base:  
Epikote*828a 65.35
Synthetic iron oxide 16.03
Asbestine 20 pm 10.79
Microtalc 5.35
Thickening agent 1.49
Silicone resin R281 0.99
  100.00
Hardener (aromatic amine):  
Epikure 153 41
Equivalent Products      
Epikote 828 Aealdite GY 250 DER 331
  815 MY 752 DER 334
  Dx 215 LC 191 DER 324
  1001 6071 DER 661
  (Shell) (Ciba-Geigy) (Dow)

Single-pack Epoxy Maintenance Paints

Epoxy Esters

The chemical structre of an epoxy resin molecule clearly shows its polyol nature. The secondary hydroxyl groups are spaced along the chain and each epoxy group is equivalent to two hydroxyl groups for the purposes of esterification.

The epoxy esters are generally manufactured from medium molecular weight epoxy resins with an EGC of approximately 1100, although lower and higher molecular weight resins are used. The properties of epoxy esters can be varied according to the degree of esterification with vegetable oil fatty acids, and the type of fatty acid used. Typical fatty acids are linseed, D.C.O., soya and tall oil. Short oil ester (30 to 50 per cent oil) are used for baking finishes and the medium and long oil esters are used for manufacture of air dry maintenance paints.

Epoxy ester maintenance coatings are used where comparatively mild corrosive conditions are encountered. They are similar to alkyd paints in drying properties, but show greater resistance to saponification and improved adhesion. They are widely used for interior and exterior protection of structural steel and exterior coatings for storage tanks in refineries and chemical plants.

Single-pack Thermoplastic Epoxy Systems

For some specialized applications, single-pack epoxy coatings are available, that differ from other types in that they are thermoplastic, non-convertible coatings. They harden purely by solvent evaporation and consist of epoxy resin of very high molecular weight dissolved in a suitable solvent.

Thermoplastic epoxies are of very high viscosity and are not as suitable for manufacture of finishing coats as the thermosetting epoxies. They are used mainly for the manufacture of highly pigmented primers, and they are particularly suitable as binders for zinc rich primers, as they give good resistance to settling on storage. The thermoplastic epoxies retain the high chemical resistance and the adhesion typical of epoxies, and have the advantage of being a one-pack formulation (similar to conventional paints). Their solvent resistance is limited, but the overcoating of primers on this resin is possible with practically all types of paints without danger of bleeding or lifting. Some softening of the paint film at elevated temperatures can be expected with thermoplastic epoxies and this should be kept in mind when considering practical applications.

Epoxy Industrial Baking Finishes

Solid epoxy resins of high molecular weight are used for manufacture of baking systems which are well known in the industrial finishing field. They are used for drum and tank linings, can coatings, domestic appliance finishes, and automotive primers.

Epoxy short oil esters are used in a similar way to alkyd resins in baking finishes, in applications when higher chemical resistance is required. High molecular weight resins with EGC lower than 600 are used for cross-linking through hydroxyl and epoxy groups using urea formaldehyde or phenol formaldehyde resins. These systems show extremely high toughness and are widely used for drum and can linings. They are baked at 2000C for 10 to 20 minutes to achieve full cure.

A new development in industrial coatings is epoxy powder coatings. The powders are manufactured by dispersing pigments and flow control additives and curing agent in a molten epoxy resin. On cooling, the blend solidifies to a hard, brittle mass, which is crushed and ground into a powder of the required particle size. Typical curing agents used for this application are based on dicyandiamide; they are solid and not reactive at room temperature. Another type of powder coating is based on a combination of epoxy and polyster resins. Powder coatings require baking at 1700 to 200 0C to form a thermoset finish.

The powders can be applied to articles by dipping the preheated object into a bath of the powder which is fluidized (by blowing air through a specially designed porous bottom of the bath) or by spraying the powder by flock gun. The most convenient method for application of powders is electrostatic spraying onto cold or preheated objects. The epoxy powder coatings have two main advantages compared with solvent-based systems:

  1. Absence of solvents reduces health and safety hazards.
  2. For special heavy duty applications, a high film thickness can be obtained in one application without danger of solvent retention or film porosity.

They are used for applications where severe corrosion conditions are encountered or where good electrical properties are important. They are becoming established in decorative coatings for application on articles of complicated shapes, such as tubular steel furniture and expanded metal articles, because of their toughness. Another use is for protection of pipelines for natural gas.

Many recent developments in industrial coatings are water-based systems. Most of the automotive primers are now applied by electrodeposition from a water dispersion of organic binder, which is negatively charged for anodic electrodeposition (or positively charged for cathodic electrodeposition). Suitably modified epoxy esters are used for both anodic and cathodic electrodeposition automotive primers.

 

 

ABOUT NPCS

NIIR Project Consultancy Services (NPCS) is a renowned name in the industrial world, offering integrated technical consultancy services. Our team consists of engineers, planners, specialists, financial experts, economic analysts, and design specialists with extensive experience in their respective industries. We provide a range of services, including Detailed Project Reports, Business Plans for Manufacturing Plants, Start-up Ideas, Business Ideas for Entrepreneurs, and Start-up Business Opportunities. Our consultancy covers various domains such as industry trends, market research, manufacturing processes, machinery, raw materials, project reports, cost and revenue analysis, pre-feasibility studies for profitable manufacturing businesses, and project identification.

Our Services

At NPCS, we offer a comprehensive suite of services to help entrepreneurs and businesses succeed. Our key services include:

  • Detailed Project Report (DPR): We provide in-depth project reports that cover every aspect of a project, from feasibility studies to financial projections.
  • Business Plan for Manufacturing Plant: We assist in creating robust business plans tailored to manufacturing plants, ensuring a clear path to success.
  • Start-up Ideas and Business Opportunities: Our team helps identify profitable business ideas and opportunities for startups.
  • Market Research and Industry Trends: We conduct thorough market research and analyze industry trends to provide actionable insights.
  • Manufacturing Process and Machinery: We offer detailed information on manufacturing processes and the machinery required for various industries.
  • Raw Materials and Supply Chain: Our reports include comprehensive details on raw materials and supply chain management.
  • Cost and Revenue Analysis: We provide detailed cost and revenue analysis to help businesses understand their financial dynamics.
  • Project Feasibility and Market Study: Our feasibility studies and market assessments help in making informed investment decisions.
  • Technical and Commercial Counseling: We offer technical and commercial counseling for setting up new industrial projects and identifying the most profitable small-scale business opportunities.

Publications

NPCS also publishes a variety of books and reports that serve as valuable resources for entrepreneurs, manufacturers, industrialists, and professionals. Our publications include:

  • Process Technology Books: Detailed guides on various manufacturing processes.
  • Technical Reference Books: Comprehensive reference materials for industrial processes.
  • Self-Employment and Start-up Books: Guides for starting and running small businesses.
  • Industry Directories and Databases: Extensive directories and databases of businesses and industries.
  • Market Research Reports: In-depth market research reports on various industries.
  • Bankable Detailed Project Reports: Detailed project reports that are useful for securing financing and investments.

Our Approach

Our approach is centered around providing reliable and exhaustive information to help entrepreneurs make sound business decisions. We use a combination of primary and secondary research, cross-validated through industry interactions, to ensure accuracy and reliability. Our reports are designed to cover all critical aspects, including:

  • Introduction and Project Overview: An introduction to the project, including objectives, strategy, product history, properties, and applications.
  • Market Study and Assessment: Analysis of the current market scenario, demand and supply, future market potential, import and export statistics, and market opportunities.
  • Raw Material Requirements: Detailed information on raw materials, their properties, quality standards, and suppliers.
  • Personnel Requirements: Information on the manpower needed, including skilled and unskilled labor, managerial, technical, office staff, and marketing personnel.
  • Plant and Machinery: A comprehensive list of the machinery and equipment required, along with suppliers and manufacturers.
  • Manufacturing Process and Formulations: Detailed descriptions of the manufacturing process, including formulations, packaging, and process flow diagrams.
  • Infrastructure and Utilities: Requirements for land, building, utilities, and infrastructure, along with construction schedules and plant layouts.

Financial Details and Analysis

Our reports include detailed financial projections and analysis to help entrepreneurs understand the financial viability of their projects. Key financial details covered in our reports include:

  • Assumptions for Profitability Workings: Assumptions used in calculating profitability.
  • Plant Economics: Analysis of the economics of the plant, including production schedules and land and building costs.
  • Production Schedule: Detailed production schedules and timelines.
  • Capital Requirements: Breakdown of capital requirements, including plant and machinery costs, fixed assets, and working capital.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses, including utilities, salaries, and other costs.
  • Revenue and Profit Projections: Detailed revenue and profit projections, including turnover and profitability ratios.
  • Break-Even Analysis: Analysis of the break-even point, including variable and fixed costs, and profit volume ratios.

Reasons to Choose NPCS

There are several reasons why entrepreneurs and businesses choose NPCS for their consultancy needs:

  • Expertise and Experience: Our team has extensive experience and expertise in various industries, ensuring reliable and accurate consultancy services.
  • Comprehensive Reports: Our reports cover all critical aspects of a project, providing entrepreneurs with the information they need to make informed decisions.
  • Market Insights: We provide detailed market insights and analysis, helping businesses understand market dynamics and opportunities.
  • Technical and Commercial Guidance: We offer both technical and commercial guidance, helping businesses navigate the complexities of setting up and running industrial projects.
  • Tailored Solutions: Our services are tailored to meet the specific needs of each client, ensuring personalized and effective consultancy.

Market Survey cum Detailed Techno Economic Feasibility Report

Our Market Survey cum Detailed Techno Economic Feasibility Report includes the following information:

  • Project Introduction: An overview of the project, including objectives and strategy.
  • Project Objective and Strategy: Detailed information on the project's objectives and strategic approach.
  • History of the Product: A concise history of the product, including its development and evolution.
  • Product Properties and Specifications: Detailed information on the properties and specifications of the product, including BIS (Bureau of Indian Standards) provisions.
  • Uses and Applications: Information on the uses and applications of the product.

Market Study and Assessment

  • Current Indian Market Scenario: Analysis of the current market scenario in India.
  • Market Demand and Supply: Information on the present market demand and supply.
  • Future Market Demand and Forecast: Estimates of future market demand and forecasts.
  • Import and Export Statistics: Data on import and export statistics.
  • Market Opportunity: Identification of market opportunities.

Raw Material Requirements

  • List of Raw Materials: Detailed list of raw materials required.
  • Properties of Raw Materials: Information on the properties of raw materials.
  • Quality Standards: Quality standards and specifications for raw materials.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of raw materials.

Personnel Requirements

  • Staff and Labor Requirements: Information on the requirement of staff and labor, including skilled and unskilled workers.
  • Managerial and Technical Staff: Details on the requirement of managerial and technical staff.
  • Office and Marketing Personnel: Information on the requirement of office and marketing personnel.

Plant and Machinery

  • List of Plant and Machinery: Comprehensive list of the plant and machinery required.
  • Miscellaneous Items and Equipment: Information on miscellaneous items and equipment.
  • Laboratory Equipment and Accessories: Details on laboratory equipment and accessories required.
  • Electrification and Utilities: Information on electrification and utility requirements.
  • Maintenance Costs: Details on maintenance costs.
  • Suppliers and Manufacturers: List of suppliers and manufacturers of plant and machinery.

Manufacturing Process and Formulations

  • Manufacturing Process: Detailed description of the manufacturing process, including formulations.
  • Packaging Requirements: Information on packaging requirements.
  • Process Flow Diagrams: Process flow diagrams illustrating the manufacturing process.

Infrastructure and Utilities

  • Project Location: Information on the project location.
  • Land Area Requirements: Details on the requirement of land area.
  • Land Rates: Information on land rates.
  • Built-Up Area: Details on the built-up area required.
  • Construction Schedule: Information on the construction schedule.
  • Plant Layout: Details on the plant layout and utility requirements.

Project at a Glance

Our reports provide a snapshot of the project, including:

  • Assumptions for Profitability Workings: Assumptions used in profitability calculations.
  • Plant Economics: Analysis of the plant's economics.
  • Production Schedule: Detailed production schedules.
  • Capital Requirements: Breakdown of capital requirements.
  • Overheads and Operating Expenses: Analysis of overheads and operating expenses.
  • Revenue and Profit Projections: Detailed revenue and profit projections.
  • Break-Even Analysis: Analysis of the break-even point.

Annexures

Our reports include several annexures that provide detailed financial and operational information:

  • Annexure 1: Cost of Project and Means of Finance: Breakdown of the project cost and financing means.
  • Annexure 2: Profitability and Net Cash Accruals: Analysis of profitability and net cash accruals.
  • Annexure 3: Working Capital Requirements: Details on working capital requirements.
  • Annexure 4: Sources and Disposition of Funds: Information on the sources and disposition of funds.
  • Annexure 5: Projected Balance Sheets: Projected balance sheets and financial ratios.
  • Annexure 6: Profitability Ratios: Analysis of profitability ratios.
  • Annexure 7: Break-Even Analysis: Detailed break-even analysis.
  • Annexures 8 to 11: Sensitivity Analysis: Sensitivity analysis for various financial parameters.
  • Annexure 12: Shareholding Pattern and Stake Status: Information on the shareholding pattern and stake status.
  • Annexure 13: Quantitative Details - Output/Sales/Stocks: Detailed information on the output, sales, and stocks, including the capacity of products/services, efficiency/yield percentages, and expected revenue.
  • Annexure 14: Product-Wise Domestic Sales Realization: Detailed analysis of domestic sales realization for each product.
  • Annexure 15: Total Raw Material Cost: Breakdown of the total cost of raw materials required for the project.
  • Annexure 16: Raw Material Cost Per Unit: Detailed cost analysis of raw materials per unit.
  • Annexure 17: Total Lab & ETP Chemical Cost: Analysis of laboratory and effluent treatment plant chemical costs.
  • Annexure 18: Consumables, Store, etc.: Details on the cost of consumables and store items.
  • Annexure 19: Packing Material Cost: Analysis of the total cost of packing materials.
  • Annexure 20: Packing Material Cost Per Unit: Detailed cost analysis of packing materials per unit.
  • Annexure 21: Employees Expenses: Comprehensive details on employee expenses, including salaries and wages.
  • Annexure 22: Fuel Expenses: Analysis of fuel expenses required for the project.
  • Annexure 23: Power/Electricity Expenses: Detailed breakdown of power and electricity expenses.
  • Annexure 24: Royalty & Other Charges: Information on royalty and other charges applicable to the project.
  • Annexure 25: Repairs & Maintenance Expenses: Analysis of repair and maintenance costs.
  • Annexure 26: Other Manufacturing Expenses: Detailed information on other manufacturing expenses.
  • Annexure 27: Administration Expenses: Breakdown of administration expenses.
  • Annexure 28: Selling Expenses: Analysis of selling expenses.
  • Annexure 29: Depreciation Charges – as per Books (Total): Detailed depreciation charges as per books.
  • Annexure 30: Depreciation Charges – as per Books (P&M): Depreciation charges for plant and machinery as per books.
  • Annexure 31: Depreciation Charges - As per IT Act WDV (Total): Depreciation charges as per the Income Tax Act written down value (total).
  • Annexure 32: Depreciation Charges - As per IT Act WDV (P&M): Depreciation charges for plant and machinery as per the Income Tax Act written down value.
  • Annexure 33: Interest and Repayment - Term Loans: Detailed analysis of interest and repayment schedules for term loans.
  • Annexure 34: Tax on Profits: Information on taxes applicable on profits.
  • Annexure 35: Projected Pay-Back Period and IRR: Analysis of the projected pay-back period and internal rate of return (IRR).

Why Choose NPCS?

Choosing NPCS for your project consultancy needs offers several advantages:

  • Comprehensive Analysis: Our reports provide a thorough analysis of all aspects of a project, helping you make informed decisions.
  • Expert Guidance: Our team of experts offers guidance on technical, commercial, and financial aspects of your project.
  • Reliable Information: We use reliable sources of information and databases to ensure the accuracy of our reports.
  • Customized Solutions: We offer customized solutions tailored to the specific needs of each client.
  • Market Insights: Our market research and analysis provide valuable insights into market trends and opportunities.
  • Technical Support: We offer ongoing technical support to help you successfully implement your project.

Testimonials

Don't just take our word for it. Here's what some of our satisfied clients have to say about NPCS:

  • John Doe, CEO of Manufacturing: "NPCS provided us with a comprehensive project report that covered all aspects of our manufacturing plant. Their insights and guidance were invaluable in helping us make informed decisions."
  • Jane Smith, Entrepreneur: "As a startup, we were looking for reliable information and support. NPCS's detailed reports and expert advice helped us navigate the complexities of setting up our business."
  • Rajesh Kumar, Industrialist: "NPCS's market research and feasibility studies were instrumental in helping us identify profitable business opportunities. Their reports are thorough and well-researched."

Case Studies

We have helped numerous clients achieve their business objectives through our comprehensive consultancy services. Here are a few case studies highlighting our successful projects:

  • Case Study 1: A leading manufacturer approached NPCS for setting up a new production line. Our detailed project report and market analysis helped them secure financing and successfully implement the project.
  • Case Study 2: A startup in the renewable energy sector needed a feasibility study for their new venture. NPCS provided a detailed analysis of market potential, raw material availability, and financial projections, helping the startup make informed decisions and attract investors.
  • Case Study 3: An established company looking to diversify into new product lines sought our consultancy services. Our comprehensive project report covered all aspects of the new venture, including manufacturing processes, machinery requirements, and market analysis, leading to a successful launch.

FAQs

Here are some frequently asked questions about our services:

What is a Detailed Project Report (DPR)?

A Detailed Project Report (DPR) is an in-depth report that covers all aspects of a project, including feasibility studies, market analysis, financial projections, manufacturing processes, and more.

How can NPCS help my startup?

NPCS provides a range of services tailored to startups, including business ideas, market research, feasibility studies, and detailed project reports. We help startups identify profitable opportunities and provide the support needed to successfully launch and grow their businesses.

What industries do you cover?

We cover a wide range of industries, including manufacturing, renewable energy, agrochemicals, pharmaceuticals, textiles, food processing, and more. Our expertise spans across various sectors, providing comprehensive consultancy services.

How do I get started with NPCS?

To get started with NPCS, simply contact us through our website, email, or phone. Our team will discuss your requirements and provide the necessary guidance and support to help you achieve your business goals.

Our Mission and Vision

Mission: Our mission is to provide comprehensive and reliable consultancy services that help entrepreneurs and businesses achieve their goals. We strive to deliver high-quality reports and support that enable our clients to make informed decisions and succeed in their ventures.

Vision: Our vision is to be the leading consultancy service provider in the industry, known for our expertise, reliability, and commitment to client success. We aim to continuously innovate and improve our services to meet the evolving needs of our clients and the industry.

NIIR Project Consultancy Services (NPCS) is your trusted partner for all your project consultancy needs. With our extensive experience, expertise, and commitment to excellence, we provide the support and guidance you need to succeed. Whether you are starting a new business, expanding your operations, or exploring new opportunities, NPCS is here to help you every step of the way. Contact us today to learn more about our services and how we can help you achieve your business goals.